无需再训练即可增强性能!港大团队提出GPC框架,实现机器人「策略组合」
无需再训练即可增强性能!港大团队提出GPC框架,实现机器人「策略组合」在机器人学习领域,提升基于生成式模型的控制策略(Policy)的性能通常意味着投入巨额成本进行额外的数据采集和模型训练,这极大地限制了机器人能力的快速迭代与升级。面对模型性能的瓶颈,如何在不增加训练负担的情况下,进一步挖掘并增强现有策略的潜力?
在机器人学习领域,提升基于生成式模型的控制策略(Policy)的性能通常意味着投入巨额成本进行额外的数据采集和模型训练,这极大地限制了机器人能力的快速迭代与升级。面对模型性能的瓶颈,如何在不增加训练负担的情况下,进一步挖掘并增强现有策略的潜力?
该研究首次提出了含可移动物体的 3D 场景中,基于文本的人 - 物交互生成任务,并构建了大规模数据集与创新方法框架,在多个评测指标上均取得了领先效果。
从数据上看,Ashby 的增长轨迹令人印象深刻。在短短一年多时间里,他们的客户数量从 1300 家翻倍增长到超过 2700 家,年收入增长了 135%,面试安排量增长了 170%。更让我感到惊讶的是,他们的燃烧倍数控制在 1 倍以下,这在当前的市场环境下是极其难得的。
英伟达不光自己成长高速,现在它在AI领域的投资也坐上火箭了。 最新数据显示,2025年过去的三个季度里,英伟达参与了50笔AI相关风险投资,这个数量已经超过了2024年全年的48笔。
中科院的这篇工作解决了“深度搜索智能体”(deep search agents),两个实打实的工程痛点,一个是问题本身不够难导致模型不必真正思考,另一个是上下文被工具长文本迅速挤爆导致过程提前夭折,研究者直面挑战,从数据和系统两端同时重塑训练与推理流程,让复杂推理既有用又能跑得起来。
本文介绍了一种用高数据效率强化学习算法 SAC 训练流策略的新方案,可以端到端优化真实的流策略,而无需采用替代目标或者策略蒸馏。SAC FLow 的核心思想是把流策略视作一个 residual RNN,再用 GRU 门控和 Transformer Decoder 两套速度参数化。
最新一季度的「AI 100」双榜单出炉了。 领军阵营中,哪些头部产品的地位被撼动,哪些新起之秀成功突围?高潜力种子选手中,有哪些新的细分场景和产品设计展现潜力? 旗舰100和创新100榜单分别聚焦「国
当地时间 10 月 15 日,美国麻省理工学院的垂直氮化镓芯片衍生公司 Vertical Semiconductor 获得 1,100 万美元的种子轮融资,清华大学苏世民学院校友、前英国驻华大使馆气候变化与环境事务副主任 Cynthia Liao 是该公司的联合创始人兼 CEO。
空间智能领域的全景数据稀缺问题,有解了。影石研究院团队,推出了基于DiT架构的全景图像生成模型DiT360。通过全新的全景图像生成框架,DiT360能够实现高质量的全景生成。
从5秒到4分钟,Sora2也做不到的分钟级长视频生成,字节做到了!这就是字节和UCLA联合提出的新方法——Self-Forcing++,无需更换模型架构或重新收集长视频数据集,就能轻松生成分钟级长视频,也不会后期画质突然变糊或卡住。