
海量文本秒转结构化,试下谷歌的LangExtract,Github上12.3k star
海量文本秒转结构化,试下谷歌的LangExtract,Github上12.3k star真正的业务宝藏往往就埋藏在那些看似杂乱无章的文本数据之中,即非结构化文本,但问题是,如何高效、可靠地把这些宝藏精准地挖出来,一直是个令人头疼的难题,今天我们就来聊聊最近GitHub12.3k star爆火的Google 开源项目LangExtract,它为这个问题提供了一个相当漂亮的答案。
真正的业务宝藏往往就埋藏在那些看似杂乱无章的文本数据之中,即非结构化文本,但问题是,如何高效、可靠地把这些宝藏精准地挖出来,一直是个令人头疼的难题,今天我们就来聊聊最近GitHub12.3k star爆火的Google 开源项目LangExtract,它为这个问题提供了一个相当漂亮的答案。
你有没有想过,Meta 训练 AI 用的数据里,有可能不只是维基百科、小说、YouTube 视频……而是你在某个晚上偷偷下载的成人电影? 你没听错。是色情片。而且不是三两个,而是 2396 部!
哦豁,OpenAI奥特曼又痛失一员大将。 Kevin Lu,领导4o-mini发布,并参与o1-mini、o3发布,主要研究强化学习、小模型和合成数据。
每当需要处理复杂领域中高度不确定性或缺乏历史数据的问题时,纯粹的科学证据不足、存在矛盾或过于复杂,通常我们就需要依赖专家们的集体智慧来形成共识,指导实践。德尔菲法(Delphi method)是半个多世纪以来最常用的一种专家共识方法。
在今年的 ACM KDD 2025 大会上,清华大学电子系团队联合中国移动发布了 UoMo,全球首个面向移动网络的通用流量预测模型。UoMo 能同时胜任短期预测、长期预测,甚至在没有历史数据的情况下生成全新区域的流量分布。
数据显示,无论是国内还是海外,AI行业的发展,在经历了爆发式增长后,都开始出现部分下滑,行业正进入一个全新的阶段。真实的用户偏好开始显现,旧的增长逻辑正在失效。
一句话概括,还在嫌弃RAG太慢?这帮研究员直接把检索数据库"蒸馏"成了一个小模型,实现了不检索的检索增强,堪称懒人福音。
当前计算机使用智能体(CUA)的发展,主要依赖于大量昂贵的人工标注数据 。这极大地限制了它们在缺少现成数据的新颖或专业软件中的应用能力 。为了打破这一瓶颈,来自上海交通大学和香港中文大学的学者们提出了 SEAgent,一个全新的、无需任何人类干预,即可通过与环境交互来自主学习和进化的智能体框架。
奥特曼在一次晚宴上勾勒出宏大愿景——从颠覆搜索与社交,到斥资数万亿打造数据中心和全新AI硬件,甚至探索脑机接口。他强调AI正处在类似互联网泡沫的关键时刻,但其潜力无可比拟。
近年来,AI大模型在数学计算、逻辑推理和代码生成领域的推理能力取得了显著突破。特别是DeepSeek-R1等先进模型的出现,可验证强化学习(RLVR)技术展现出强大的性能提升潜力。