AI资讯新闻榜单内容搜索-数学推理

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: 数学推理
非Transformer架构的新突破,Liquid AI开源LFM2.5-1.2B-Thinking模型

非Transformer架构的新突破,Liquid AI开源LFM2.5-1.2B-Thinking模型

非Transformer架构的新突破,Liquid AI开源LFM2.5-1.2B-Thinking模型

就在刚刚,Liquid AI 又一次在 LFM 模型上放大招。他们正式发布并开源了 LFM2.5-1.2B-Thinking,一款可完全在端侧运行的推理模型。Liquid AI 声称,该模型专门为简洁推理而训练;在生成最终答案前,会先生成内部思考轨迹;在端侧级别的低延迟条件下,实现系统化的问题求解;在工具使用、数学推理和指令遵循方面表现尤为出色。

来自主题: AI资讯
9471 点击    2026-01-22 11:59
DeepSeek强势回归,开源IMO金牌级数学模型

DeepSeek强势回归,开源IMO金牌级数学模型

DeepSeek强势回归,开源IMO金牌级数学模型

就在刚刚,DeepSeek 又悄咪咪在 Hugging Face 上传了一个新模型:DeepSeek-Math-V2。顾名思义,这是一个数学方面的模型。它的上一个版本 ——DeepSeek-Math-7b 还是一年多以前发的。当时,这个模型只用 7B 参数量,就达到了 GPT-4 和 Gemini-Ultra 性能相当的水平。相关论文还首次引入了 GRPO,显著提升了数学推理能力。

来自主题: AI资讯
8680 点击    2025-11-27 22:47
清华团队:1.5B 模型新基线!用「最笨」的 RL 配方达到顶尖性能

清华团队:1.5B 模型新基线!用「最笨」的 RL 配方达到顶尖性能

清华团队:1.5B 模型新基线!用「最笨」的 RL 配方达到顶尖性能

如果有人告诉你:不用分阶段做强化学习、不搞课程学习、不动态调参,只用最基础的 RL 配方就能达到小模型数学推理能力 SOTA,你信吗?

来自主题: AI技术研报
6442 点击    2025-11-13 09:37
港科提出新算法革新大模型推理范式:随机策略估值竟成LLM数学推理「神操作」

港科提出新算法革新大模型推理范式:随机策略估值竟成LLM数学推理「神操作」

港科提出新算法革新大模型推理范式:随机策略估值竟成LLM数学推理「神操作」

论文第一作者何浩然是香港科技大学博士生,研究方向包括强化学习和基础模型等,研究目标是通过经验和奖励激发超级智能。共同第一作者叶语霄是香港科技大学一年级博士。通讯作者为香港科技大学电子及计算机工程系、计

来自主题: AI技术研报
8401 点击    2025-11-01 09:24
刚刚,Thinking Machines Lab博客提出在策略蒸馏,Qwen被cue 38次

刚刚,Thinking Machines Lab博客提出在策略蒸馏,Qwen被cue 38次

刚刚,Thinking Machines Lab博客提出在策略蒸馏,Qwen被cue 38次

刚刚,不发论文、爱发博客的 Thinking Machines Lab (以下简称 TML)再次更新,发布了一篇题为《在策略蒸馏》的博客。在策略蒸馏(on-policy distillation)是一种将强化学习 (RL) 的纠错相关性与 SFT 的奖励密度相结合的训练方法。在将其用于数学推理和内部聊天助手时,TML 发现在策略蒸馏可以极低的成本超越其他方法。

来自主题: AI技术研报
8093 点击    2025-10-28 10:50
X上63万人围观的Traning-Free GRPO:把GRPO搬进上下文空间学习

X上63万人围观的Traning-Free GRPO:把GRPO搬进上下文空间学习

X上63万人围观的Traning-Free GRPO:把GRPO搬进上下文空间学习

年初的 DeepSeek-R1,带来了大模型强化学习(RL)的火爆。无论是数学推理、工具调用,还是多智能体协作,GRPO(Group Relative Policy Optimization)都成了最常见的 RL 算法。

来自主题: AI技术研报
6730 点击    2025-10-23 11:41
只需1/4预算,性能反超基线:阿里高德提出Tree-GRPO,高效破解智能体RL难题

只需1/4预算,性能反超基线:阿里高德提出Tree-GRPO,高效破解智能体RL难题

只需1/4预算,性能反超基线:阿里高德提出Tree-GRPO,高效破解智能体RL难题

对于大模型的强化学习已在数学推理、代码生成等静态任务中展现出不俗实力,而在需要与开放世界交互的智能体任务中,仍面临「两朵乌云」:高昂的 Rollout 预算(成千上万的 Token 与高成本的工具调用)和极其稀疏的「只看结果」的奖励信号。

来自主题: AI技术研报
8137 点击    2025-10-15 12:07
告别无效计算!新TTS框架拯救19%被埋没答案,推理准确率飙升

告别无效计算!新TTS框架拯救19%被埋没答案,推理准确率飙升

告别无效计算!新TTS框架拯救19%被埋没答案,推理准确率飙升

大语言模型通过 CoT 已具备强大的数学推理能力,而 Beam Search、DVTS 等测试时扩展(Test-Time Scaling, TTS)方法可通过分配额外计算资源进一步提升准确性。然而,现有方法存在两大关键缺陷:路径同质化(推理路径趋同)和中间结果利用不足(大量高质量推理分支被丢弃)。

来自主题: AI技术研报
8732 点击    2025-09-03 12:03