RAE+VAE? 预训练表征助力扩散模型Tokenizer,加速像素压缩到语义提取
RAE+VAE? 预训练表征助力扩散模型Tokenizer,加速像素压缩到语义提取近期,RAE(Diffusion Transformers with Representation Autoencoders)提出以「 冻结的预训练视觉表征」直接作为潜空间,以显著提升扩散模型的生成性能。
近期,RAE(Diffusion Transformers with Representation Autoencoders)提出以「 冻结的预训练视觉表征」直接作为潜空间,以显著提升扩散模型的生成性能。
谷歌遗珠与IBM预言:一文点醒Karpathy,扩散模型或成LLM下一步。
扩散大语言模型得到了突飞猛进的发展,早在 25 年 2 月 Inception Labs 推出 Mercury—— 第一个商业级扩散大型语言模型,同期人民大学发布第一个开源 8B 扩散大语言模型 LLaDA,5 月份 Gemini Diffusion 也接踵而至。
当下的文本生成图像扩散模型取得了长足进展,为图像生成引入布局控制(Layout-to-Image, L2I)成为可能。
近日,上海人工智能实验室针对该难题提出全新范式 SDAR (Synergistic Diffusion-AutoRegression)。该方法通过「训练-推理解耦」的巧妙设计,无缝融合了 AR 模型的高性能与扩散模型的并行推理优势,能以极低成本将任意 AR 模型「改造」为并行解码模型。
按从左到右的顺序依次生成下一个 token 真的是大模型生成方式的最优解吗?最近,越来越多的研究者对此提出质疑。其中,有些研究者已经转向一个新的方向 —— 掩码扩散语言模型(MDLM)。
近年来,基于扩散模型的图像生成技术发展迅猛,催生了Stable Diffusion、Midjourney等一系列强大的文生图应用。然而,当前主流的训练范式普遍依赖一个核心组件——变分自编码器(VAE),这也带来了长久以来困扰研究者们的几个问题:
前脚谢赛宁刚宣告VAE在图像生成领域退役,后脚清华与快手可灵团队也带着无VAE潜在扩散模型SVG来了。
长期以来,扩散模型的训练通常依赖由变分自编码器(VAE)构建的低维潜空间表示。然而,VAE 的潜空间表征能力有限,难以有效支撑感知理解等核心视觉任务,同时「VAE + Diffusion」的范式在训练
今年,流匹配无疑是机器人学习领域的大热门:作为扩散模型的一种优雅的变体,流匹配凭借简单、好用的特点,成为了机器人底层操作策略的主流手段,并被广泛应用于先进的 VLA 模型之中 —— 无论是 Physical Intelligence 的 ,LeRobot 的 SmolVLA, 英伟达的 GR00T 和近期清华大学发布的 RDT2。