
华人团队终结Token危机:扩散模型数据潜力超自回归三倍
华人团队终结Token危机:扩散模型数据潜力超自回归三倍Token危机真的要解除了吗? 最新研究发现,在token数量受限的情况下,扩散语言模型的数据潜力可达自回归模型的三倍多。
Token危机真的要解除了吗? 最新研究发现,在token数量受限的情况下,扩散语言模型的数据潜力可达自回归模型的三倍多。
上海人工智能实验室等团队提出Lumina-mGPT 2.0 —— 一款独立的、仅使用解码器的自回归模型,统一了包括文生图、图像对生成、主体驱动生成、多轮图像编辑、可控生成和密集预测在内的广泛任务。
近年来,扩散模型在图像与视频合成领域展现出前所未有的生成能力,为人脸生成与编辑技术按下了加速键。特别是一张静态人脸驱动任意表情、姿态乃至光照的梦想,正在走向大众工具箱,并在三大场景展现巨大潜力
扩散语言模型(DLMs)是超强的数据学习者。 token 危机终于要不存在了吗? 近日,新加坡国立大学 AI 研究者 Jinjie Ni 及其团队向着解决 token 危机迈出了关键一步。
当前环境感知通信正逐步成为第六代移动通信系统(6G)的核心使能技术之一。为支撑其在复杂三维环境下的部署需求,西安电子科技大学、香港中文大学(深圳)和加拿大滑铁卢大学的研究团队联合提出了一个面向6G的高分辨率多模态三维无线电图谱数据集UrbanRadio3D,并构建了基于扩散模型的三维无线电图生成框架RadioDiff-3D。
近年来,扩散模型(Diffusion Models)凭借出色的生成质量,迅速成为图像、视频、语音、3D 内容等生成任务中的主流技术。从文本生成图像(如 Stable Diffusion),到高质量人脸合成、音频生成,再到三维形状建模,扩散模型正在广泛应用于游戏、虚拟现实、数字内容创作、广告设计、医学影像以及新兴的 AI 原生生产工具中。
用扩散模型写代码,不仅像开了倍速,改起来还特别灵活! 字节Seed最新发布扩散语言模型Seed Diffusion Preview,这款模型主要聚焦于代码生成领域,它的特别之处在于采用了离散状态扩散技术,在推理速度上表现出色。
自 Stable Diffusion、Flux 等扩散模型 (Diffusion models) 席卷图像生成领域以来,文本到图像的生成技术取得了长足进步。但它们往往只能根据精确的文字或图片提示作图,缺乏真正读懂图像与文本、在多模 态上下文中推理并创作的能力。能否让模型像人类一样真正读懂图像与文本、完成多模态推理与创作,一直是学术界和工业界关注的热门问题。
近年来,随着扩散模型(Diffusion Models)和扩散 Transformer(DiT)在视频生成领域的广泛应用,AI 合成视频的质量和连贯性有了飞跃式提升。像 OpenAI Sora、HunyuanVideo、Wan2.1 等大模型,已经能够生成结构清晰、细节丰富且高度连贯的长视频内容,为数字内容创作、虚拟世界和多媒体娱乐带来了巨大变革。
谁说扩散模型只能生成图像和视频?现在它们能高质量地写代码了,速度还比传统大模型更快!Inception Labs推出基于扩散技术的全新商业级大语言模型——Mercury。