
扩散LLM推理新范式:打破生成长度限制,实现动态自适应调节
扩散LLM推理新范式:打破生成长度限制,实现动态自适应调节随着 Gemini-Diffusion,Seed-Diffusion 等扩散大语言模型(DLLM)的发布,这一领域成为了工业界和学术界的热门方向。但是,当前 DLLM 存在着在推理时必须采用预设固定长度的限制,对于不同任务都需要专门调整才能达到最优效果。
随着 Gemini-Diffusion,Seed-Diffusion 等扩散大语言模型(DLLM)的发布,这一领域成为了工业界和学术界的热门方向。但是,当前 DLLM 存在着在推理时必须采用预设固定长度的限制,对于不同任务都需要专门调整才能达到最优效果。
扩散语言模型(Diffusion-based LLMs,简称 dLLMs)以其并行解码、双向上下文建模、灵活插入masked token进行解码的特性,成为一个重要的发展方向。
近日,NVIDIA 联合香港大学、MIT 等机构重磅推出 Fast-dLLM,以无需训练的即插即用加速方案,实现了推理速度的突破!通过创新的技术组合,在不依赖重新训练模型的前提下,该工作为扩散模型的推理加速带来了突破性进展。本文将结合具体技术细节与实验数据,解析其核心优势。
普林斯顿大学与字节 Seed、北大、清华等研究团队合作提出了 MMaDA(Multimodal Large Diffusion Language Models),作为首个系统性探索扩散架构的多模态基础模型,MMaDA 通过三项核心技术突破,成功实现了文本推理、多模态理解与图像生成的统一建模。
2025年2月27日,由前扩散模型领域顶尖研究者创立的Inception Labs正式发布了全球首个商业级扩散大语言模型(dLLM)——“Mercury”。这一里程碑式产品不仅在生成速度、硬件效率和成本控制上实现突破,更标志着自然语言处理技术从自回归(Autoregressive)范式向扩散(Diffusion)范式的重大跃迁。
近年来,大语言模型(LLMs)取得了突破性进展,展现了诸如上下文学习、指令遵循、推理和多轮对话等能力。目前,普遍的观点认为其成功依赖于自回归模型的「next token prediction」范式。