
全面超越DPO:陈丹琦团队提出简单偏好优化SimPO,还炼出最强8B开源模型
全面超越DPO:陈丹琦团队提出简单偏好优化SimPO,还炼出最强8B开源模型为了将大型语言模型(LLM)与人类的价值和意图对齐,学习人类反馈至关重要,这能确保它们是有用的、诚实的和无害的。在对齐 LLM 方面,一种有效的方法是根据人类反馈的强化学习(RLHF)。尽管经典 RLHF 方法的结果很出色,但其多阶段的过程依然带来了一些优化难题,其中涉及到训练一个奖励模型,然后优化一个策略模型来最大化该奖励。
为了将大型语言模型(LLM)与人类的价值和意图对齐,学习人类反馈至关重要,这能确保它们是有用的、诚实的和无害的。在对齐 LLM 方面,一种有效的方法是根据人类反馈的强化学习(RLHF)。尽管经典 RLHF 方法的结果很出色,但其多阶段的过程依然带来了一些优化难题,其中涉及到训练一个奖励模型,然后优化一个策略模型来最大化该奖励。
在图像生成领域占据主导地位的扩散模型,开始挑战强化学习智能体。
基于人类反馈的强化学习 (RLHF) 使得大语言模型的输出能够更加符合人类的目标、期望与需求,是提升许多闭源语言模型 Chat-GPT, Claude, Gemini 表现的核心方法之一。
在对齐大型语言模型(LLM)与人类意图方面,最常用的方法必然是根据人类反馈的强化学习(RLHF)
AI和机器人专家的长远目标,是创造出具有一般具身智能的代理,它们能够像动物或人类一样,在物理世界中灵活、巧妙地行动
大语言模型(LLM),通过在海量数据集上的训练,展现了超强的多任务学习、通用世界知识目标规划以及推理能力
你敢信?一款手游里藏着400+个AI角色,且各自有各自的性格……这就是腾讯在一年一度的“游戏界春晚”GDC上展示的一场技术肌肉秀——《火影忍者》手游相关负责人介绍了大规模强化学习AI训练系统,该方法的训练成本和时间比传统的训练方案减少90%。
StepCoder将长序列代码生成任务分解为代码完成子任务课程来缓解强化学习探索难题,对未执行的代码段以细粒度优化;还开源了可用于强化学习训练的APPS+数据集。
在目前的模型训练范式中,偏好数据的的获取与使用已经成为了不可或缺的一环。在训练中,偏好数据通常被用作对齐(alignment)时的训练优化目标,如基于人类或 AI 反馈的强化学习(RLHF/RLAIF)或者直接偏好优化(DPO),而在模型评估中,由于任务的复杂性且通常没有标准答案,则通常直接以人类标注者或高性能大模型(LLM-as-a-Judge)的偏好标注作为评判标准。
尽管收集人类对模型生成内容的相对质量的标签,并通过强化学习从人类反馈(RLHF)来微调无监督大语言模型,使其符合这些偏好的方法极大地推动了对话式人工智能的发展。