与DeepSeek-OCR不谋而合,NeurIPS论文提出让LLM像人一样读长文本
与DeepSeek-OCR不谋而合,NeurIPS论文提出让LLM像人一样读长文本在处理短文本时,大语言模型(LLM)已经表现出惊人的理解和生成能力。但现实世界中的许多任务 —— 如长文档理解、复杂问答、检索增强生成(RAG)等 —— 都需要模型处理成千上万甚至几十万长度的上下文。
在处理短文本时,大语言模型(LLM)已经表现出惊人的理解和生成能力。但现实世界中的许多任务 —— 如长文档理解、复杂问答、检索增强生成(RAG)等 —— 都需要模型处理成千上万甚至几十万长度的上下文。
近日,美国南加州大学教授约书亚·杨(Joshua Yang)团队和合作者成功造出一个功能齐全的人工神经元 1M1T1R,这是一种能像真实脑细胞一样工作的人工神经元,有望催生出类似人脑的基于硬件的学习系统,并有望将 AI 转变为更加接近自然智能的形态。
AI应用的竞速赛快速升温,健康,成了蚂蚁的新答案。
当好莱坞还在为预算头疼时,硅谷的AI、韩国的IP和中东的资本已经悄然联手,他们的目标是用一个全新的「导演级AI」物种,彻底重塑电影工业。
大家一直热衷谈论的AGI忽然不香了,主流的AI公司都开始改口谈「超级智能」,AGI已经沦落为研究员口中的「自动化软件开发工具」。苏莱曼领军的微软MAI团队,正成为超级智能赛道一位新的「超级玩家」。曾曝「欺凌员工」的他,如今要打造有「人味」的AI。
2025年前盛行的闭源+重资本范式正被DeepSeek-R1与月之暗面Kimi K2 Thinking改写,二者以数百万美元成本、开源权重,凭MoE与MuonClip等优化,在SWE-Bench与BrowseComp等基准追平或超越GPT-5,并以更低API价格与本地部署撬动市场预期,促使行业从砸钱堆料转向以架构创新与稳定训练为核心的高效路线。
2024年,加州大学圣地亚哥分校「Hao AI Lab」提出了DistServe的解耦推理理念,短短一年多时间,迅速从实验室概念成长为行业标准,被NVIDIA、vLLM等主流大模型推理框架采用,预示着AI正迈向「模块化智能」的新时代。
现有的LLM智能体训练框架都是针对单智能体的,多智能体的“群体强化”仍是一个亟须解决的问题。为了解决这一领域的研究痛点,来自UCSD和英特尔的研究人员,提出了新的提出通用化多智能体强化学习框架——PettingLLMs。支持任意组合的多个LLM一起训练。
《Science》的一篇新文章指出,大模型存在一个先天难解的软肋:幻觉难以根除。AI厂商让大模型在不确定性情况下说「我不知道」,虽然有助于减少模型幻觉,但可能因此影响用户留存与活跃度,动摇商业根本。
加州大学河滨分校团队发现,AI组合推理表现不佳部分源于评测指标过于苛刻。他们提出新指标GroupMatch和Test-Time Matching算法,挖掘模型潜力,使GPT-4.1在Winoground测试中首次超越人类,0.2B参数的SigLIP-B16在MMVP-VLM基准测试上超越GPT-4.1并刷新最优结果。这表明模型的组合推理能力早已存在,只需合适方法在测试阶段解锁。