Loop-ViT:让AI学会「反复思考」,3.8M参数小模型追平人类平均水平
Loop-ViT:让AI学会「反复思考」,3.8M参数小模型追平人类平均水平当我们解一道复杂的数学题或观察一幅抽象图案时,大脑往往需要反复思考、逐步推演。然而,当前主流的深度学习模型却走的是「一次通过」的路线——输入数据,经过固定层数的网络,直接输出答案。
当我们解一道复杂的数学题或观察一幅抽象图案时,大脑往往需要反复思考、逐步推演。然而,当前主流的深度学习模型却走的是「一次通过」的路线——输入数据,经过固定层数的网络,直接输出答案。
等效参数量仅0.3B,内存占用仅600MB,更适合端侧部署还带思维链的模型来了。腾讯混元最新推出面向消费级硬件场景的“极小”模型HY-1.8B-2Bit,体量甚至比常用的一些手机应用还小。
怎样做一个爆款大模型应用?这恐怕是2026年AI开发者们都在关注的问题。当算力和性能不再是唯一的护城河,“爆款”意味着大模型要能精准地“抓住”每一名具体的用户,而个性化正是其中的关键技术之一。
10B参数拥有媲美千亿级模型的多模态推理实力。
小模型身上的“秘密”这下算是被扒光了!
联想给出的公式是,混合AI=个人智能+企业智能+公共智能。这种模式下,AI智能体应用不再依赖于单一的云端模型,而是云端大模型与本地定制化小模型的深度融合。
在近一年里,Agentic System(代理系统/智能体系统)正变得无处不在。从Open AI的Deep Research到Claude Code,我们看到越来越多的系统不再依赖单一模型,而是通过多模型协作来完成复杂的长窗口任务。
。过去的行业共识是:端侧只能跑小模型,性能与体验必须妥协;真正的能力仍得依赖云端最强模型。万格智元要打破的,正是这条旧认知。公司正在打造的cPilot端侧算力引擎,选择了一条更难、却更接近未来的路径:通过自研的非GPU推理引擎,让300亿、500亿等超大模型在性能有限制的消费硬件上高效推理
AI不应是巨头游戏,模型也不是越大越聪明。近日,「Transformer八子」中的Ashish Vaswani和Parmar共同推出了一个8B的开源小模型,剑指Scaling Law软肋,为轻量化、开放式AI探索了新方向。
8B 模型在数学竞赛任务上超越 GPT-5!