黄仁勋「收购式」抢人继续:20多亿美金“买走”Mobileye创始人AI新团队
黄仁勋「收购式」抢人继续:20多亿美金“买走”Mobileye创始人AI新团队财大气粗的老黄,又要出手了!为了将200多位顶尖AI人才纳入麾下,英伟达被曝拟用20~30亿美金收购一家以色列AI初创公司。这家公司名为AI21 Labs,是以色列为数不多的自主研发大语言模型的公司,其联创还曾创办了明星自动驾驶公司Mobileye(Mobileye被收购后成了英特尔副总裁)。
财大气粗的老黄,又要出手了!为了将200多位顶尖AI人才纳入麾下,英伟达被曝拟用20~30亿美金收购一家以色列AI初创公司。这家公司名为AI21 Labs,是以色列为数不多的自主研发大语言模型的公司,其联创还曾创办了明星自动驾驶公司Mobileye(Mobileye被收购后成了英特尔副总裁)。
在大语言模型(LLM)落地应用中,推理速度始终是制约效率的核心瓶颈。传统自回归(AR)解码虽能保证生成质量,却需逐 token 串行计算,速度极为缓慢;扩散型 LLM(dLLMs)虽支持并行解码,却面
清华大学等多所高校联合发布SR-LLM,这是一种融合大语言模型与深度强化学习的符号回归框架。它通过检索增强和语义推理,从数据中生成简洁、可解释的数学模型,显著优于现有方法。在跟车行为建模等任务中,SR-LLM不仅复现经典模型,还发现更优新模型,为机器自主科学发现开辟新路径。
近年来,大语言模型在「写得长、写得顺」这件事上进步飞快。但当任务升级到真正复杂的推理场景 —— 需要兵分多路探索、需要自我反思与相互印证、需要在多条线索之间做汇总与取舍时,传统的链式思维(Chain-of-Thought)往往就开始「吃力」:容易被早期判断带偏、发散不足、自我纠错弱,而且顺序生成的效率天然受限。
近年来,多模态大语言模型正在经历一场快速的范式转变,新兴研究聚焦于构建能够联合处理和生成跨语言、视觉、音频以及其他潜在感官模态信息的统一全模态大模型。此类模型的目标不仅是感知全模态内容,还要将视觉理解和生成整合到统一架构中,从而实现模态间的协同交互。
近年来,大语言模型的能力突飞猛进,但随之而来的却是愈发棘手的双重用途风险(dual-use risks)。当模型在海量公开互联网数据中学习时,它不仅掌握语言与推理能力,也不可避免地接触到 CBRN(化学、生物、放射、核)危险制造、软件漏洞利用等高敏感度、潜在危险的知识领域。
多模态大语言模型(MLLMs)已成为AI视觉理解的核心引擎,但其在真实世界视觉退化(模糊、噪声、遮挡等)下的性能崩溃,始终是制约产业落地的致命瓶颈。
强化学习(RL)在大语言模型和 2D 图像生成中大获成功后,首次被系统性拓展到文本到 3D 生成领域!面对 3D 物体更高的空间复杂性、全局几何一致性和局部纹理精细化的双重挑战,研究者们首次系统研究了 RL 在 3D 自回归生成中的应用!
在大语言模型和文生图领域,强化学习(RL)已成为提升模型思维链与生成质量的关键方法。
独家获悉,腾讯近期完成了一次组织调整,正式新成立AI Infra部、AI Data部、数据计算平台部。 12月17日下午发布的内部公告中,腾讯表示,Vinces Yao将出任“CEO/总裁办公室”首席AI科学家,向腾讯总裁刘炽平汇报;他同时兼任AI Infra部、大语言模型部负责人,向技术工程事业群总裁卢山汇报。