
谷歌提出全新RLHF方法:消除奖励模型,且无需对抗性训练
谷歌提出全新RLHF方法:消除奖励模型,且无需对抗性训练大型语言模型(LLM)的成功离不开「基于人类反馈的强化学习(RLHF)」。RLHF 可以大致可以分为两个阶段,首先,给定一对偏好和不偏好的行为,训练一个奖励模型,通过分类目标为前者分配更高的分数。
大型语言模型(LLM)的成功离不开「基于人类反馈的强化学习(RLHF)」。RLHF 可以大致可以分为两个阶段,首先,给定一对偏好和不偏好的行为,训练一个奖励模型,通过分类目标为前者分配更高的分数。
2023 年,大型语言模型(LLM)以其强大的生成、理解、推理等能力而持续受到高度关注。然而,训练和部署 LLM 非常昂贵,需要大量的计算资源和内存,因此研究人员开发了许多用于加速 LLM 预训练、微调和推理的方法。
多模态大型语言模型进展如何?盘点 26 个当前最佳多模态大型语言模型。
随着大型语言模型(LLM)技术日渐成熟,提示工程(Prompt Engineering)变得越来越重要。一些研究机构发布了 LLM 提示工程指南,包括微软、OpenAI 等等。
距离上次推出的 v0.4.0 大版本的三周后,我们又再次迎来了重大的更新 — v0.5.0!在这个最新版本中,我们隆重推出了 AI Agent 能力。
瑞士信息与通信科技公司Lakera成立于2021年,该公司为生成式AI应用程序开发的安全工具拥有专有的威胁情报数据库,可防御对大型语言模型(LLM)的各类攻击并对AI应用程序进行压力测试检测漏洞,为AI应用程序提供企业级的安全保护。
自 ChatGPT 等大型语言模型推出以来,为了提升模型效果,各种指令微调方法陆续被提出。本文中,普林斯顿博士生、陈丹琦学生高天宇汇总了指令微调领域的进展,包括数据、算法和评估等。
本综述深入探讨了大型语言模型的资源高效化问题。
在大型语言模型(LLM)的世界中,处理多轮对话一直是一个挑战。前不久麻省理工 Guangxuan Xiao 等人推出的 StreamingLLM,能够在不牺牲推理速度和生成效果的前提下,可实现多轮对话总共 400 万个 token 的流式输入,22.2 倍的推理速度提升。
大型语言模型(LLM)虽然在诸多下游任务上展现出卓越的能力,但其实际应用还存在一些问题。其中,LLM 的「幻觉(hallucination)」问题是一个重要缺陷。