
参数量不到10亿的OctopusV3,如何媲美GPT-4V和GPT-4?
参数量不到10亿的OctopusV3,如何媲美GPT-4V和GPT-4?多模态 AI 系统的特点在于能够处理和学习包括自然语言、视觉、音频等各种类型的数据,从而指导其行为决策。近期,将视觉数据纳入大型语言模型 (如 GPT-4V) 的研究取得了重要进展,但如何有效地将图像信息转化为 AI 系统的可执行动作仍面临挑战。
多模态 AI 系统的特点在于能够处理和学习包括自然语言、视觉、音频等各种类型的数据,从而指导其行为决策。近期,将视觉数据纳入大型语言模型 (如 GPT-4V) 的研究取得了重要进展,但如何有效地将图像信息转化为 AI 系统的可执行动作仍面临挑战。
大型语言模型(LLM)往往会追求更长的「上下文窗口」,但由于微调成本高、长文本稀缺以及新token位置引入的灾难值(catastrophic values)等问题,目前模型的上下文窗口大多不超过128k个token
在对齐大型语言模型(LLM)与人类意图方面,最常用的方法必然是根据人类反馈的强化学习(RLHF)
虽然大型语言模型(LLM)在各种常见的自然语言处理任务中展现出了优异的性能,但随之而来的幻觉,也揭示了模型在真实性和透明度上仍然存在问题。
近年来,多模态大型语言模型(MLLM)在各个领域的应用取得了显著的成功。然而,作为许多下游任务的基础模型,当前的 MLLM 由众所周知的 Transformer 网络构成,这种网络具有较低效的二次计算复杂度。
如今,大型语言模型(LLM)已经成为了我们生活中的好帮手
生成式人工智能(Generative Artificial Intelligence,简称生成式 AI)是 AI 的一种形式,可以生成从论文到视频等任何东西,协助人类处理信息和数据。生成式人工智能的引入,特别是 ChatGPT 等「大型语言模型」(LLM) 聊天机器人的引入,使得许多人预测这项新技术将改变现有的教育模式。
OpenAI的竞争对手Anthropic发现了一种称为"多样本越狱攻击"的漏洞,可以绕过大型语言模型的安全防护措施。这种攻击利用了模型的长上下文窗口,通过在提示中添加大量假对话来引导模型产生有害的反应。虽然已经采取了一些缓解措施,但该漏洞仍然存在。
苹果首次披露了在多模态大型语言模型(LLM)研究领域的最新突破,并在生成式AI领域“开辟新天地”。探索生成式AI领域,将AI技术引入iPhone
最近几年,基于 Transformer 的架构在多种任务上都表现卓越,吸引了世界的瞩目。使用这类架构搭配大量数据,得到的大型语言模型(LLM)等模型可以很好地泛化用于真实世界用例。