
视觉语言模型导论:这篇论文能成为你进军VLM的第一步
视觉语言模型导论:这篇论文能成为你进军VLM的第一步近些年,语言建模领域进展非凡。Llama 或 ChatGPT 等许多大型语言模型(LLM)有能力解决多种不同的任务,它们也正在成为越来越常用的工具。
近些年,语言建模领域进展非凡。Llama 或 ChatGPT 等许多大型语言模型(LLM)有能力解决多种不同的任务,它们也正在成为越来越常用的工具。
大型语言模型(LLM)的一个主要特点是「大」,也因此其训练和部署成本都相当高,如何在保证 LLM 准确度的同时让其变小就成了非常重要且有价值的研究课题。
从大规模网络爬取、精细过滤到去重技术,通过FineWeb的技术报告探索如何打造高质量数据集,为大型语言模型(LLM)预训练提供更优质的性能。
随着大型语言模型(LLM)规模不断增大,其性能也在不断提升。尽管如此,LLM 依然面临着一个关键难题:与人类的价值和意图对齐。在解决这一难题方面,一种强大的技术是根据人类反馈的强化学习(RLHF)。
研究人员提出了一种新的大型语言模型训练方法,通过一次性预测多个未来tokens来提高样本效率和模型性能,在代码和自然语言生成任务上均表现出显著优势,且不会增加训练时间,推理速度还能提升至三倍。
为了将大型语言模型(LLM)与人类的价值和意图对齐,学习人类反馈至关重要,这能确保它们是有用的、诚实的和无害的。在对齐 LLM 方面,一种有效的方法是根据人类反馈的强化学习(RLHF)。尽管经典 RLHF 方法的结果很出色,但其多阶段的过程依然带来了一些优化难题,其中涉及到训练一个奖励模型,然后优化一个策略模型来最大化该奖励。
在大型语言模型的训练过程中,数据的处理方式至关重要。
传统上,大型语言模型(LLMs)被认为是顺序解码器,逐个解码每个token。
近年来,大型语言模型(LLM)在数学应用题和数学定理证明等任务中取得了长足的进步。数学推理需要严格的、形式化的多步推理过程,因此是 LLMs 推理能力进步的关键里程碑, 但仍然面临着重要的挑战。
人工智能(AI)工具正在改变科学研究的方式。AlphaFold基本解决了蛋白质结构预测难题;DeepMD大大提高了分子模拟的效率和精度;而新兴的大型语言模型,如ChatGPT等,也正在科学研究领域开疆拓土。