
不微调,让LLM推理准确率暴增到99%!试下DeepConf,一个轻量级推理框架|Meta最新
不微调,让LLM推理准确率暴增到99%!试下DeepConf,一个轻量级推理框架|Meta最新在大型语言模型(LLM)进行数学题、逻辑推理等复杂任务时,一个非常流行且有效的方法叫做 “自洽性”(Self-Consistency),通常也被称为“平行思考”。
在大型语言模型(LLM)进行数学题、逻辑推理等复杂任务时,一个非常流行且有效的方法叫做 “自洽性”(Self-Consistency),通常也被称为“平行思考”。
近日,微软旗下的协作式编程平台 GitHub 正深化与埃隆·马斯克旗下 xAI 公司的合作,将 xAI 的 Grok Code Fast 1 大型语言模型(LLM)的早期使用权整合到 GitHub Copilot 中。
在这场以大型语言模型(LLM)为核心的 AI 浪潮中,苹果似乎一直保持着低调,很少出现在技术报道的前沿。尽管如此,时不时地,该公司也能拿出一些非常亮眼的研究成果,比如能在 iPhone 上直接运行的高效视觉语言模型 FastVLM。
一家名为Palabra AI 的初创公司正在开发 AI 语音翻译引擎,致力于解决教学大型语言模型(LLMs)理解多种语言这一颇具挑战性的难题。
近年来,强化学习(RL)在大型语言模型(LLM)的微调过程中,尤其是在推理能力提升方面,取得了显著的成效。传统的强化学习方法,如近端策略优化(Proximal Policy Optimization,PPO)及其变种,包括组相对策略优化(Group Relative Policy Optimization,GRPO),在处理复杂推理任务时表现出了强大的潜力。
当前,大型语言模型(LLM)在软件工程领域的应用日新月异,尤其是在自动修复 Bug 方面,以 SWE-bench 为代表的基准测试展示了 AI 惊人的潜力。然而,软件开发远不止于修 Bug,功能开发与迭代才是日常工作的重头戏。
众所周知,大型语言模型的训练通常分为两个阶段。第一阶段是「预训练」,开发者利用大规模文本数据集训练模型,让它学会预测句子中的下一个词。第二阶段是「后训练」,旨在教会模型如何更好地理解和执行人类指令。
LangExtract 是一个 Python 库,利用大型语言模型(LLMs)从非结构化文本中提取结构化信息,基于用户定义的指令。它可以处理临床笔记或报告等材料,识别并组织关键细节,同时确保提取的数据与源文本对应。
视频大型语言模型(Video LLMs)的发展日新月异,它们似乎能够精准描述视频内容、准确的回答相关问题,展现出足以乱真的人类级理解力。
研究人员首次系统综述了大型语言模型(LLM)在法律领域的应用,提出创新的双重视角分类法,融合法律推理框架(经典的法律论证型式框架)与职业本体(律师/法官/当事人角色),统一梳理技术突破与伦理治理挑战。论文涵盖LLM在法律文本处理、知识整合、推理形式化方面的进展,并指出幻觉、可解释性缺失、跨法域适应等核心问题,为下一代法律人工智能奠定理论基础与实践路线图。