
ICML 2025 Oral | NAS老树开新花,NUS提出智能体超网,成本狂降55%
ICML 2025 Oral | NAS老树开新花,NUS提出智能体超网,成本狂降55%LLM 智能体的时代,单个 Agent 的能力已到瓶颈,组建像 “智能体天团” 一样的多智能体系统已经见证了广泛的成功
LLM 智能体的时代,单个 Agent 的能力已到瓶颈,组建像 “智能体天团” 一样的多智能体系统已经见证了广泛的成功
Anthropic 前两天发了一篇文章,重点讨论了他们是如何通过多智能体系统来构建 claude 的“深度研究功能”。
昨天最热的的两篇文章是关于多智能体系统构建的讨论。 先是 Anthropic 发布了他们在深度搜索多智能体构建过程中的一些经验,具体:包括多智能体系统的优势、架构概览、提示工程与评估、智能体的有效评估等方面。
自Agent火了以后,有关"记忆"的框架如雨后春笋般涌现,但绝大多数仍是为"单兵作战"设计,难以适应需要复杂协作、信息交互量暴增10倍的多智能体系统(MAS)
为了推动该领域加速健康发展,由上海交通大学、上海 AI 实验室、牛津大学、普林斯顿大学、Meta 等十个机构联合推出的 MASLab,带来首个统一、全面、研究友好的大模型多智能体系统代码库:
多AI智能体系统的复杂构建与优化,长期以来是用智能体解决科研问题和场景落地的瓶颈。来自英国格拉斯哥大学的研究团队发布了全球首个AI智能体自进化开源框架EvoAgentX,通过引入自我进化机制,打破了传统多智能体系统在构建和优化中的限制!
多智能体系统成功锁定
在生成式AI和多智能体系统迅速发展的当下,谁能率先解决“可信度”和“可控性”问题,谁就能真正把AI带入生产级别的商业落地。英国AI创业公司 Portia AI,正是在这个方向上突围的代表。
多智能体系统分布式共识优化的一系列研究来了!
这两年,AI 领域最激动人心的进展莫过于大型语言模型(LLM)的崛起,LLM 展现了惊人的理解和生成能力。