均值至上假繁荣!北大新作专挑难题,逼出AI模型真本事
均值至上假繁荣!北大新作专挑难题,逼出AI模型真本事大模型后训练的痛点:均值优化忽略低概率高信息路径,导致推理能力停滞。RiskPO双管齐下,MVaR目标函数推导梯度估计,多问题捆绑转化反馈,实验中Geo3K准确率54.5%,LiveCodeBench Pass@1提升1%,泛化能力强悍。
大模型后训练的痛点:均值优化忽略低概率高信息路径,导致推理能力停滞。RiskPO双管齐下,MVaR目标函数推导梯度估计,多问题捆绑转化反馈,实验中Geo3K准确率54.5%,LiveCodeBench Pass@1提升1%,泛化能力强悍。
强化学习能力强大,几乎已经成为推理模型训练流程中的标配,也有不少研究者在探索强化学习可以为大模型带来哪些涌现行为。
从ChatGPT到DeepSeek,强化学习(Reinforcement Learning, RL)已成为大语言模型(LLM)后训练的关键一环。
在多模态大模型的后训练浪潮中,强化学习驱动的范式已成为提升模型推理与通用能力的关键方向。
当强化学习(RL)成为大模型后训练的核心工具,「带可验证奖励的强化学习(RLVR)」凭借客观的二元反馈(如解题对错),迅速成为提升推理能力的主流范式。从数学解题到代码生成,RLVR 本应推动模型突破「已知答案采样」的局限,真正掌握深度推理逻辑 —— 但现实是,以 GRPO 为代表的主流方法正陷入「均值优化陷阱」。
当全球的目光还在聚焦基座模型的参数竞赛时,一场更为深刻的变革正在悄然发生——后训练(Post-Training)。
既然后训练这么重要,那么作为初学者,应该掌握哪些知识?大家不妨看看这篇博客《Post-training 101》,可以很好的入门 LLM 后训练相关知识。从对下一个 token 预测过渡到指令跟随; 监督微调(SFT) 基本原理,包括数据集构建与损失函数设计;
OpenAI的后训练负责人和DeepMind的另一位AI4S大佬,双双离职并成立了一家AI4S公司Periodic Labs,专注于用AI Agent改造传统科研,助力攻克室温超导等世纪难题。目前该公司已获3亿美元融资。
监督微调(SFT)和强化学习(RL)微调是大模型后训练常见的两种手段。通过强化学习微调大模型在众多 NLP 场景都取得了较好的进展,但是在文本分类场景,强化学习未取得较大的进展,其表现往往不如监督学习。
为了回答这一问题,来自牛津大学、Meta 超级智能实验室等机构的研究者提出设想:推理计算是否可以替代缺失的监督?本文认为答案是肯定的,他们提出了一种名为 CaT(Compute as Teacher)的方法,核心思想是把推理时的额外计算当作教师信号,在缺乏人工标注或可验证答案时,也能为大模型提供监督信号。