
WRC整理床铺机器人背后模型曝光!端到端双系统全身智能VLA,仅凭少量微调就能get任务
WRC整理床铺机器人背后模型曝光!端到端双系统全身智能VLA,仅凭少量微调就能get任务仅凭少量后训练微调,机器人就能完全自主、连续不断地完成床铺整理任务。 而它的每一步思考与动作实时投放在大屏幕上。
仅凭少量后训练微调,机器人就能完全自主、连续不断地完成床铺整理任务。 而它的每一步思考与动作实时投放在大屏幕上。
硅星人独家了解到,星海图即将开源全球首个开放场景高质量真机数据集Galaxea Open-World Dataset,及其G0-快慢双系统全身智能VLA模型。这一举动无疑在相对各自为战的机器人行业打开了一条新的路径。
在机器人操控领域,实现高频响应与复杂推理的统一,一直是一个重大技术挑战。近期,北京大学与香港中文大学的研究团队联合发布了名为 Fast-in-Slow(FiS-VLA) 的全新双系统视觉 - 语言 - 动作模型。
让机器人学会聪明且快速精准执行,一直是机器人操控领域的难题。为了解决这个问题,香港中文大学、北京大学、智平方和北京智源研究院联合创新性地提出了Fast-in-Slow(FiS-VLA),即一个统一的双系统VLA模型。
2025年,全球具身智能赛道爆火,VLA模型成为了绝对的C位。从美国RT-2的开创性突破,到中国最新FiS-VLA「快慢双系统」,VLA正以光速硬核进化。
基于这一理念,DeepMind团队开发了一个双系统框架,称为Talker-Reasoner,旨在模仿人类的这两种思维模式。
一位90岁巨擘的逝世,正在牵动整个科技圈的关注。 正如YC创始人Paul Graham所说: 我关注的每一个人,都在对丹尼尔·卡尼曼表达敬意。