
打破长视频理解瓶颈:HoPE混合位置编码提升VLM长度泛化能力
打破长视频理解瓶颈:HoPE混合位置编码提升VLM长度泛化能力如今的视觉语言模型 (VLM, Vision Language Models) 已经在视觉问答、图像描述等多模态任务上取得了卓越的表现。然而,它们在长视频理解和检索等长上下文任务中仍表现不佳。
如今的视觉语言模型 (VLM, Vision Language Models) 已经在视觉问答、图像描述等多模态任务上取得了卓越的表现。然而,它们在长视频理解和检索等长上下文任务中仍表现不佳。
长文本能力对语言模型(LM,Language Model)尤为重要,试想,如果 LM 可以处理无限长度的输入文本,我们可以预先把所有参考资料都喂给 LM,或许 LM 在应对人类的提问时就会变得无所不能。
随着语言大模型的成功,视觉 - 语言多模态大模型 (Vision-Language Multimodal Models, 简写为 VLMs) 发展迅速,但在长上下文场景下表现却不尽如人意,这一问题严重制约了多模态模型在实际应用中的潜力。
一个有效的复杂系统总是从一个有效的简单系统演化而来的。——John Gall
在当今的人工智能领域,Transformer 模型已成为解决诸多自然语言处理任务的核心。然而,Transformer 模型在处理长文本时常常遇到性能瓶颈。传统的位置编码方法,如绝对位置编码(APE)和相对位置编码(RPE),虽然在许多任务中表现良好,但其固定性限制了其在处理超长文本时的适应性和灵活性。
RNN每个step的隐状态都取决于上一个step的输出,这种连续的状态转移方式使得RNN天然带有位置信息。
在自然语言处理(Natural Language Processing,NLP)领域,Transformer 模型因其在序列建模中的卓越性能而受到广泛关注。