
英伟达nGPT重塑Transformer,AI训练速度暴增20倍!文本越长,加速越快
英伟达nGPT重塑Transformer,AI训练速度暴增20倍!文本越长,加速越快LLM训练速度还可以再飙升20倍!英伟达团队祭出全新架构归一化Transformer(nGPT),上下文越长,训练速度越快,还能维持原有精度。
LLM训练速度还可以再飙升20倍!英伟达团队祭出全新架构归一化Transformer(nGPT),上下文越长,训练速度越快,还能维持原有精度。
近日,来自谷歌DeepMind的研究人员提出了Michelangelo,「用米开朗基罗的观点」来测量任意上下文长度的基础模型性能。
RAG(Retrieval-Augmented Generation)是一种结合信息检索与文本生成的技术,旨在提高大型语言模型(LLM)在回答复杂查询时的表现。它通过检索相关的上下文信息来增强生成答案的质量和准确性。解读RAG测评:关键指标与应用分析
十一假期第1天, OpenAI一年一度的开发者大会又来了惹!今年的开发者大会分成三部分分别在美国、英国、新加坡三个地点举办,刚刚结束的是第一场。
去年,OpenAI在旧金山举办了一场引发业界轰动的开发者大会(DevDay 2023),推出了一系列新产品和工具,包括支持128K上下文的GPT-4 Turbo,API价格下调,新的Assistants API,具备视觉功能的GPT-4 Turbo,DALL·E 3 API,以及大幅改进的JSON模型,还有命运多舛的GPTs和类App Store平台GPT Store。
曾几何时,LLM还是憨憨的。 脑子里的知识比较混乱,同时上下文窗口长度也有限。 检索增强生成(RAG)的出现在很大程度上提升了模型的性能。
扩展多模态大语言模型(MLLMs)的长上下文能力对于视频理解、高分辨率图像理解以及多模态智能体至关重要。这涉及一系列系统性的优化,包括模型架构、数据构建和训练策略,尤其要解决诸如随着图像增多性能下降以及高计算成本等挑战。
上下文学习(In-Context Learning, ICL)是指LLMs能够仅通过提示中给出的少量样例,就迅速掌握并执行新任务的能力。这种“超能力”让LLMs表现得像是一个"万能学习者",能够在各种场景下快速适应并产生高质量输出。然而,关于ICL的内部机制,学界一直存在争议。
Anthropic推出Claude企业版,集成GitHub和500K上下文长度。
AI编程初创公司Magic发布1亿上下文窗口模型,编码能力超级加倍