AI资讯新闻榜单内容搜索-上下文

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: 上下文
Memory和RAG的区别在哪?用「上下文工程」做出个性化 AI(谷歌白皮书精读)

Memory和RAG的区别在哪?用「上下文工程」做出个性化 AI(谷歌白皮书精读)

Memory和RAG的区别在哪?用「上下文工程」做出个性化 AI(谷歌白皮书精读)

谷歌在第三天发布了《上下文工程:会话与记忆》(Context Engineering: Sessions & Memory) 白皮书。文中开篇指出,LLM模型本身是无状态的 (stateless)。如果要构建有状态的(stateful)和个性化的 AI,关键在于上下文工程。

来自主题: AI技术研报
5665 点击    2025-11-14 10:22
用155万模拟视频给模型上课!GVE模型一次学会9种视频检索技能

用155万模拟视频给模型上课!GVE模型一次学会9种视频检索技能

用155万模拟视频给模型上课!GVE模型一次学会9种视频检索技能

当前视频检索研究正陷入一个闭环困境:以MSRVTT为代表的窄域基准,长期主导模型在粗粒度文本查询上的优化,导致训练数据有偏、模型能力受限,难以应对真实世界中细粒度、长上下文、多模态组合等复杂检索需求。

来自主题: AI技术研报
5388 点击    2025-11-14 09:41
与DeepSeek-OCR不谋而合,NeurIPS论文提出让LLM像人一样读长文本

与DeepSeek-OCR不谋而合,NeurIPS论文提出让LLM像人一样读长文本

与DeepSeek-OCR不谋而合,NeurIPS论文提出让LLM像人一样读长文本

在处理短文本时,大语言模型(LLM)已经表现出惊人的理解和生成能力。但现实世界中的许多任务 —— 如长文档理解、复杂问答、检索增强生成(RAG)等 —— 都需要模型处理成千上万甚至几十万长度的上下文。

来自主题: AI技术研报
5776 点击    2025-11-10 15:12
终结Transformer统治!清华姚班校友出手,剑指AI「灾难性遗忘」

终结Transformer统治!清华姚班校友出手,剑指AI「灾难性遗忘」

终结Transformer统治!清华姚班校友出手,剑指AI「灾难性遗忘」

大模型「灾难性遗忘」问题或将迎来突破。近日,NeurIPS 2025收录了谷歌研究院的一篇论文,其中提出一种全新的「嵌套学习(Nested Learning)」架构。实验中基于该框架的「Hope」模型在语言建模与长上下文记忆任务中超越Transformer模型,这意味着大模型正迈向具备自我改进能力的新阶段。

来自主题: AI技术研报
6960 点击    2025-11-10 09:56
马斯克Grok 4深夜大升级:200万逆天上下文、五倍GPT-5「脑容量」!

马斯克Grok 4深夜大升级:200万逆天上下文、五倍GPT-5「脑容量」!

马斯克Grok 4深夜大升级:200万逆天上下文、五倍GPT-5「脑容量」!

太快了!一天之内Grok连迎两大更新——Grok 4 Fast与Grok Imagine都进行了大升级。Grok 4 Fast把上下文窗口提高到2M,并把完成率拉到94.1%(推理)与97.9%(非推理)。这意味着,你不必再把一本书或一整个代码库切碎喂给模型,它可以一次吞下,然后稳定地给出结果。

来自主题: AI资讯
8239 点击    2025-11-09 15:42
40页的上下文工程ebook「深度拆解」|weaviate

40页的上下文工程ebook「深度拆解」|weaviate

40页的上下文工程ebook「深度拆解」|weaviate

如果你也在做 RAG 或智能体应用,大概经历过这些瞬间:文档切得太碎,答案失去上下文;切得太大,又召回不准;加了更多提示词,效果可能更不稳定。

来自主题: AI技术研报
5643 点击    2025-11-06 09:37
多智能体系统中,如何用向量数据库共享上下文?OpenAgents x Milvus

多智能体系统中,如何用向量数据库共享上下文?OpenAgents x Milvus

多智能体系统中,如何用向量数据库共享上下文?OpenAgents x Milvus

静态编排 VS 动态编排,谁是多agent系统最优解?通常来说,面对简单问题,采用react模式的单一agent就能搞定。可遇到复杂问题,单一agent就会立刻出现包括但不限于以下问题:串行执行效率低:无法同时完成并行的子步骤(如 “同时爬取 A、B 两个网站的数据”)。

来自主题: AI技术研报
7278 点击    2025-11-06 09:33
Context Engineering 2.0:在未来,一个人的本质,就是其所有上下文的总和|上海交大

Context Engineering 2.0:在未来,一个人的本质,就是其所有上下文的总和|上海交大

Context Engineering 2.0:在未来,一个人的本质,就是其所有上下文的总和|上海交大

在几天前,上海交大发布了一篇名为 《上下文工程2.0:上下文工程的上下文》(Context Engineering 2.0: The Context of Context Engineering) 的重磅论文。

来自主题: AI技术研报
5598 点击    2025-11-05 09:57
「上下文工程」 已经30岁了,而你可能刚知道它

「上下文工程」 已经30岁了,而你可能刚知道它

「上下文工程」 已经30岁了,而你可能刚知道它

AI时代,人不再只是「社会关系的总和」,而是由无数数据、记录和互动的上下文构成的。

来自主题: AI技术研报
10182 点击    2025-11-03 09:50
Kimi开源新线性注意力架构,首次超越全注意力模型,推理速度暴涨6倍

Kimi开源新线性注意力架构,首次超越全注意力模型,推理速度暴涨6倍

Kimi开源新线性注意力架构,首次超越全注意力模型,推理速度暴涨6倍

月之暗面最新发布的开源Kimi Linear架构,用一种全新的注意力机制,在相同训练条件下首次超越了全注意力模型。在长上下文任务中,它不仅减少了75%的KV缓存需求,还实现了高达6倍的推理加速。

来自主题: AI技术研报
9184 点击    2025-10-31 15:46