
DeepMind携Mamba华人作者推Transformer革命之作!性能暴涨媲美Llama 2,推理能效大幅碾压
DeepMind携Mamba华人作者推Transformer革命之作!性能暴涨媲美Llama 2,推理能效大幅碾压线性RNN赢了?近日,谷歌DeepMind一口气推出两大新架构,在d基准测试中超越了Transformer。新架构不仅保证了高效的训练和推理速度,并且成功扩展到了14B。
线性RNN赢了?近日,谷歌DeepMind一口气推出两大新架构,在d基准测试中超越了Transformer。新架构不仅保证了高效的训练和推理速度,并且成功扩展到了14B。
去年 12 月,新架构 Mamba 引爆了 AI 圈,向屹立不倒的 Transformer 发起了挑战。如今,谷歌 DeepMind「Hawk 」和「Griffin 」的推出为 AI 圈提供了新的选择。
老黄关于未来最新的想法和预测,以及他对于过去很多问题的再思考,还有他的很多日常生活小习惯,都在这篇专访里了。
GPT早已成为大模型时代的基础。国外一位开发者发布了一篇实践指南,仅用60行代码构建GPT。
最近,OpenAI 视频生成模型 Sora 的爆火,给基于 Transformer 的扩散模型重新带来了一波热度,比如 Sora 研发负责人之一 William Peebles 与纽约大学助理教授谢赛宁去年提出的 DiT(Diffusion Transformer)。
根据 OpenAI 披露的技术报告,Sora 的核心技术点之一是将视觉数据转化为 patch 的统一表征形式,并通过 Transformer 和扩散模型结合,展现了卓越的扩展(scale)特性。
近期,DiT(Diffusion Transformer)论文的作者谢赛宁在朋友圈分享了他对 Sora 的看法,其中核心资源的排序是——人才第一、数据第二、算力第三,其他都没有什么是不可替代的。
几天前,ICLR 2024 的最终接收结果出来了。
2 月 16 日,OpenAI Sora 的发布无疑标志着视频生成领域的一次重大突破。Sora 基于 Diffusion Transformer 架构,和市面上大部分主流方法(由 2D Stable Diffusion 扩展)并不相同。
最近几年,基于 Transformer 的架构在多种任务上都表现卓越,吸引了世界的瞩目。使用这类架构搭配大量数据,得到的大型语言模型(LLM)等模型可以很好地泛化用于真实世界用例。