AI资讯新闻榜单内容搜索-transforme

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: transforme
陶哲轩神预言!Transformer破解百年三体难题,凭数学直觉找到李雅普诺夫函数

陶哲轩神预言!Transformer破解百年三体难题,凭数学直觉找到李雅普诺夫函数

陶哲轩神预言!Transformer破解百年三体难题,凭数学直觉找到李雅普诺夫函数

Transformer解决了三体问题?Meta研究者发现,132年前的数学难题——发现全局李雅普诺夫函数,可以被Transformer解决了。「我们不认为Transformer是在推理,它可能是出于对数学问题的深刻理解,产生了超级直觉。」AI可以搞基础数学研究了,陶哲轩预言再成真。

来自主题: AI技术研报
9457 点击    2024-10-28 17:29
RNN回归!Bengio新作大道至简与Transformer一较高下

RNN回归!Bengio新作大道至简与Transformer一较高下

RNN回归!Bengio新作大道至简与Transformer一较高下

近日,深度学习三巨头之一的Yoshua Bengio,带领团队推出了全新的RNN架构,以大道至简的思想与Transformer一较高下。

来自主题: AI技术研报
2782 点击    2024-10-25 14:42
英伟达nGPT重塑Transformer,AI训练速度暴增20倍!文本越长,加速越快

英伟达nGPT重塑Transformer,AI训练速度暴增20倍!文本越长,加速越快

英伟达nGPT重塑Transformer,AI训练速度暴增20倍!文本越长,加速越快

LLM训练速度还可以再飙升20倍!英伟达团队祭出全新架构归一化Transformer(nGPT),上下文越长,训练速度越快,还能维持原有精度。

来自主题: AI技术研报
3676 点击    2024-10-20 17:11
132年未解开的李雅普诺夫函数谜题,被Symbolic Transformer攻克了

132年未解开的李雅普诺夫函数谜题,被Symbolic Transformer攻克了

132年未解开的李雅普诺夫函数谜题,被Symbolic Transformer攻克了

牛顿没解决的问题,AI给你解决了? AI的推理能力一直是研究的焦点。作为最纯粹、要求最高的推理形式之一,能否解决高级的数学问题,无疑是衡量语言模型推理水平的一把尺。

来自主题: AI技术研报
3840 点击    2024-10-20 16:41
苹果一篇论文得罪大模型圈?Transformer不会推理,只是高级模式匹配器!所有LLM都判死刑

苹果一篇论文得罪大模型圈?Transformer不会推理,只是高级模式匹配器!所有LLM都判死刑

苹果一篇论文得罪大模型圈?Transformer不会推理,只是高级模式匹配器!所有LLM都判死刑

苹果研究者发现:无论是OpenAI GPT-4o和o1,还是Llama、Phi、Gemma和Mistral等开源模型,都未被发现任何形式推理的证据,而更像是复杂的模式匹配器。无独有偶,一项多位数乘法的研究也被抛出来,越来越多的证据证实:LLM不会推理!

来自主题: AI技术研报
3399 点击    2024-10-19 16:32
Jurgen、曼宁等大佬新作:MoE重塑6年前的Universal Transformer,高效升级

Jurgen、曼宁等大佬新作:MoE重塑6年前的Universal Transformer,高效升级

Jurgen、曼宁等大佬新作:MoE重塑6年前的Universal Transformer,高效升级

7 年前,谷歌在论文《Attention is All You Need》中提出了 Transformer。就在 Transformer 提出的第二年,谷歌又发布了 Universal Transformer(UT)。它的核心特征是通过跨层共享参数来实现深度循环,从而重新引入了 RNN 具有的循环表达能力。

来自主题: AI技术研报
8753 点击    2024-10-19 14:29
补齐Transformer规划短板又不放弃快速思考,田渊栋团队的Dualformer融合System 1和2双重优势

补齐Transformer规划短板又不放弃快速思考,田渊栋团队的Dualformer融合System 1和2双重优势

补齐Transformer规划短板又不放弃快速思考,田渊栋团队的Dualformer融合System 1和2双重优势

OpenAI ο1 模型的发布掀起了人们对 AI 推理过程的关注,甚至让现在的 AI 行业开始放弃卷越来越大的模型,而是开始针对推理过程进行优化了。今天我们介绍的这项来自 Meta FAIR 田渊栋团队的研究也是如此,其从人类认知理论中获得了灵感,提出了一种新型 Transformer 架构:Dualformer。

来自主题: AI技术研报
3587 点击    2024-10-16 15:56
图灵奖得主Yoshua Bengio新作:Were RNNs All We Needed?

图灵奖得主Yoshua Bengio新作:Were RNNs All We Needed?

图灵奖得主Yoshua Bengio新作:Were RNNs All We Needed?

自从 Transformer 模型问世以来,试图挑战其在自然语言处理地位的挑战者层出不穷。 这次登场的选手,不仅要挑战 Transformer 的地位,还致敬了经典论文的名字。 再看这篇论文的作者列表,图灵奖得主、深度学习三巨头之一的 Yoshua Bengio 赫然在列。

来自主题: AI技术研报
4151 点击    2024-10-14 15:42
扩散模型训练方法一直错了!谢赛宁:Representation matters

扩散模型训练方法一直错了!谢赛宁:Representation matters

扩散模型训练方法一直错了!谢赛宁:Representation matters

是什么让纽约大学著名研究者谢赛宁三连呼喊「Representation matters」?他表示:「我们可能一直都在用错误的方法训练扩散模型。」即使对生成模型而言,表征也依然有用。基于此,他们提出了 REPA,即表征对齐技术,其能让「训练扩散 Transformer 变得比你想象的更简单。」

来自主题: AI技术研报
3522 点击    2024-10-14 15:22