RAE+VAE? 预训练表征助力扩散模型Tokenizer,加速像素压缩到语义提取
RAE+VAE? 预训练表征助力扩散模型Tokenizer,加速像素压缩到语义提取近期,RAE(Diffusion Transformers with Representation Autoencoders)提出以「 冻结的预训练视觉表征」直接作为潜空间,以显著提升扩散模型的生成性能。
近期,RAE(Diffusion Transformers with Representation Autoencoders)提出以「 冻结的预训练视觉表征」直接作为潜空间,以显著提升扩散模型的生成性能。
为此,北大、UC San Diego 和 BeingBeyond 联合提出一种新的方法——Being-VL 的视觉 BPE 路线。Being-VL 的出发点是把这一步后置:先在纯自监督、无 language condition 的设定下,把图像离散化并「分词」,再与文本在同一词表、同一序列中由同一 Transformer 统一建模,从源头缩短跨模态链路并保留视觉结构先验。
最近,Mamba 作者之一 Albert Gu 又发新研究,他参与的一篇论文《 Dynamic Chunking for End-to-End Hierarchical Sequence Modeling 》提出了一个分层网络 H-Net,其用模型内部的动态分块过程取代 tokenization,从而自动发现和操作有意义的数据单元。
视觉Token可以与LLMs词表无缝对齐了!
当我们看到一张猫咪照片时,大脑自然就能识别「这是一只猫」。但对计算机来说,它看到的是一个巨大的数字矩阵 —— 假设是一张 1000×1000 像素的彩色图片,实际上是一个包含 300 万个数字的数据集(1000×1000×3 个颜色通道)。每个数字代表一个像素点的颜色深浅,从 0 到 255。
研究者提出了FAST,一种高效的动作Tokenizer。通过结合离散余弦变换(DCT)和字节对编码(BPE),FAST显著缩短了训练时间,并且能高效地学习和执行复杂任务,标志着机器人自回归Transformer训练的一个重要突破。
2019 年问世的 GPT-2,其 tokenizer 使用了 BPE 算法,这种算法至今仍很常见,但这种方式是最优的吗?来自 HuggingFace 的一篇文章给出了解释。
Sora、Genie等模型会都用到的Tokenizer,微软下手了—— 开源了一套全能的Video Tokenizer,名为VidTok。
BLT 在许多基准测试中超越了基于 token 的架构。
tokenizer对于图像、视频生成的重要性值得重视。