能聊健康≠懂医疗:医疗AI助手爆火一年,“专业断层”比想象中大
能聊健康≠懂医疗:医疗AI助手爆火一年,“专业断层”比想象中大基于真实居民健康档案构建的MedLLM-EHR-EVAL-V2评测集显示,星火医疗大模型在智能健康分析、报告解读、运动饮食建议、辅助诊疗、智能用药审核等关键任务上,得分均显著超越国内外主流大模型。
基于真实居民健康档案构建的MedLLM-EHR-EVAL-V2评测集显示,星火医疗大模型在智能健康分析、报告解读、运动饮食建议、辅助诊疗、智能用药审核等关键任务上,得分均显著超越国内外主流大模型。
扩散语言模型(dLLM),这个曾被认为是「小众赛道」的研究方向,如今终于迎来了质变。
扩散语言模型(Diffusion Language Models, DLLMs)因其多种潜在的特性而备受关注,如能加速的非自回归并行生成特性,能直接起草编辑的特性,能数据增强的特性。然而,其模型能力往往落后于同等规模的强力自回归(AR)模型。
扩散语言模型(Diffusion LLMs, dLLMs)因支持「任意顺序生成」和并行解码而备受瞩目。直觉上,打破传统自回归(AR)「从左到右」的束缚,理应赋予模型更广阔的解空间,从而在数学、代码等复杂任务上解锁更强的推理潜力。
在大语言模型(LLM)落地应用中,推理速度始终是制约效率的核心瓶颈。传统自回归(AR)解码虽能保证生成质量,却需逐 token 串行计算,速度极为缓慢;扩散型 LLM(dLLMs)虽支持并行解码,却面
基于扩散的大语言模型 (dLLM) 凭借全局解码和双向注意力机制解锁了原生的并行解码和受控生成的潜力,最近吸引了广泛的关注。例如 Fast-dLLM 的现有推理框架通过分块半自回归解码进一步实现了 dLLM 对 KV cache 的支持,挑战了传统自回归 LLMs 的统治地位。
扩散式语言模型(Diffusion Language Model, DLM)虽近期受关注,但社区长期受限于(1)缺乏易用开发框架与(2)高昂训练成本,导致多数 DLM 难以在合理预算下复现,初学者也难以真正理解其训练与生成机制。
自回归(AR)大语言模型逐 token 顺序解码的范式限制了推理效率;扩散 LLM(dLLM)以并行生成见长,但过去难以稳定跑赢自回归(AR)模型,尤其是在 KV Cache 复用、和 可变长度 支持上仍存挑战。
近日,蚂蚁集团正式开源业界首个高性能扩散语言模型(Diffusion Large Language Model,dLLM)推理框架 dInfer。
近年来,扩散大语言模型(Diffusion Large Language Models, dLLMs)正迅速崭露头角,成为文本生成领域的一股新势力。与传统自回归(Autoregressive, AR)模型从左到右逐字生成不同,dLLM 依托迭代去噪的生成机制,不仅能够一次性生成多个 token,还能在对话、推理、创作等任务中展现出独特的优势。