AI资讯新闻榜单内容搜索-context

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: context
上下文工程的Agent Skills来了,CC、Codex直接用,一周获2.3k star

上下文工程的Agent Skills来了,CC、Codex直接用,一周获2.3k star

上下文工程的Agent Skills来了,CC、Codex直接用,一周获2.3k star

GitHub上最近出现了一个非常火的项目Agent-Skills-for-Context-Engineering,发布不到一周就斩获了2.3k Stars。为什么它能瞬间引爆社区?因为站在2025年末的节点上,我们已经受够了那些只存在于大厂白皮书里的Context Engineering(上下文工程) 理论。

来自主题: AI技术研报
7601 点击    2025-12-26 10:56
对标GPT-4o和香蕉!浙大开源ContextGen:布局身份协同新SOTA

对标GPT-4o和香蕉!浙大开源ContextGen:布局身份协同新SOTA

对标GPT-4o和香蕉!浙大开源ContextGen:布局身份协同新SOTA

浙江大学ReLER团队开源ContextGen框架,攻克多实例图像生成中布局与身份协同控制难题。基于Diffusion Transformer架构,通过双重注意力机制,实现布局精准锚定与身份高保真隔离,在基准测试中超越开源SOTA模型,对标GPT-4o等闭源系统,为定制化AI图像生成带来新突破。

来自主题: AI技术研报
8733 点击    2025-12-22 16:08
从 RAG 到 Context:2025 年 RAG 技术年终总结

从 RAG 到 Context:2025 年 RAG 技术年终总结

从 RAG 到 Context:2025 年 RAG 技术年终总结

过去的 2025 年,对于检索增强生成(RAG)技术而言,是经历深刻反思、激烈辩论与实质性演进的一年。

来自主题: AI技术研报
6773 点击    2025-12-22 09:37
不靠死记布局也能按图生成,多实例生成的布局控制终于“可控且不串脸”了丨浙大团队

不靠死记布局也能按图生成,多实例生成的布局控制终于“可控且不串脸”了丨浙大团队

不靠死记布局也能按图生成,多实例生成的布局控制终于“可控且不串脸”了丨浙大团队

尽管扩散模型在单图像生成上已经日渐成熟,但当任务升级为高度定制化的多实例图像生成(Multi-Instance Image Generation, MIG)时,挑战随之显现:

来自主题: AI技术研报
9637 点击    2025-12-22 09:33
Prompt、Context engineering 又向前进化了,3个关键维度+5个具体杠杆 |谷歌

Prompt、Context engineering 又向前进化了,3个关键维度+5个具体杠杆 |谷歌

Prompt、Context engineering 又向前进化了,3个关键维度+5个具体杠杆 |谷歌

我们正处在一个AI Agent(智能体)爆发的时代。从简单的ReAct循环到复杂的Multi-Agent Swarm(多智能体蜂群),新的架构层出不穷。但在这些眼花缭乱的名词背后,开发者的工作往往更像是一门“玄学”,我们凭直觉调整提示词,凭经验增加Agent的数量,却很难说清楚为什么某个架构在特定任务上表现更好。

来自主题: AI技术研报
7790 点击    2025-12-16 09:59
告别「盲目自信」,CCD:扩散语言模型推理新SOTA

告别「盲目自信」,CCD:扩散语言模型推理新SOTA

告别「盲目自信」,CCD:扩散语言模型推理新SOTA

扩散语言模型(Diffusion Language Models)以其独特的 “全局规划” 与并行解码能力广为人知,成为 LLM 领域的全新范式之一。然而在 Any-order 解码模式下,其通常面临

来自主题: AI技术研报
6964 点击    2025-12-13 10:59
RAG不会过时,但你需要这10个上下文处理技巧|Context Engineering系列一

RAG不会过时,但你需要这10个上下文处理技巧|Context Engineering系列一

RAG不会过时,但你需要这10个上下文处理技巧|Context Engineering系列一

RAG效果不及预期,试试这10个上下文处理优化技巧。对大部分开发者来说,搭一个RAG或者agent不难,怎么把它优化成生产可用的状态最难。在这个过程中,检索效率、准确性、成本、响应速度,都是重点关注问题。

来自主题: AI技术研报
7759 点击    2025-11-29 10:03
RAG效果要提升,先搞定高质量Context Pruning

RAG效果要提升,先搞定高质量Context Pruning

RAG效果要提升,先搞定高质量Context Pruning

Context Pruning如何结合rerank,优化RAG上下文?

来自主题: AI技术研报
8687 点击    2025-11-28 10:05
AI Agent 工程化,本质是数据库系统设计

AI Agent 工程化,本质是数据库系统设计

AI Agent 工程化,本质是数据库系统设计

最近半年,我阅读了业界关于 AI Agent 的工程实践:Anthropic 的 Context Engineering 论文、Manus 的工程分享、Cline 的 Memory Bank 设计等。同时自己也一直在做跟 AI Agent 相关的项目,如:Jta[1](开源的翻译 Agent,基于 Agentic Workflow)。

来自主题: AI技术研报
8201 点击    2025-11-20 15:03
EMNLP2025 | 通研院揭秘MoE可解释性,提升Context忠实性!

EMNLP2025 | 通研院揭秘MoE可解释性,提升Context忠实性!

EMNLP2025 | 通研院揭秘MoE可解释性,提升Context忠实性!

在大模型研究领域,做混合专家模型(MoE)的团队很多,但专注机制可解释性(Mechanistic Interpretability)的却寥寥无几 —— 而将二者深度结合,从底层机制理解复杂推理过程的工作,更是凤毛麟角。

来自主题: AI技术研报
9277 点击    2025-11-17 09:25