
反击AI论文!arXiv每年拒掉2%造假内容,自动化工具加入审核
反击AI论文!arXiv每年拒掉2%造假内容,自动化工具加入审核AI生成论文泛滥成灾,arXiv平台看不下去了—— 紧急升级审核机制,用自动化工具来检测AI生成内容。 Nature最新发现,原来每年竟然都有2%的论文会因为AI使用被拒?! 比如像,bioRxiv和medRxiv每天都要拒绝十多篇公式化AI手稿,每个月就高达7000多份。
AI生成论文泛滥成灾,arXiv平台看不下去了—— 紧急升级审核机制,用自动化工具来检测AI生成内容。 Nature最新发现,原来每年竟然都有2%的论文会因为AI使用被拒?! 比如像,bioRxiv和medRxiv每天都要拒绝十多篇公式化AI手稿,每个月就高达7000多份。
刚刚,一篇来自香港大学 XLANG Lab 和月之暗面等多家机构的论文上线了 arXiv,其中提出了一个用于构建和扩展 CUA(使用计算机的智能体)的完全开源的框架。 使用该框架,他们还构建了一个旗舰模型 OpenCUA-32B,其在 OSWorld-Verified 上达到了 34.8% 的成功率,创下了新的开源 SOTA,甚至在这个基准测试中超越了 GPT-4o。
仅靠提示词优化就能超越 DeepSeek 开发的 GRPO 强化学习算法? 是的,你没有看错。近日上线 arXiv 的一篇论文正是凭此吸引了无数眼球。
LLM Ensemble(大语言模型集成)在近年来快速地获得了广泛关注。它指的是在下游任务推理阶段,综合考虑并利用多个大语言模型(每个模型都旨在处理用户查询),从而发挥它们各自的优势。大语言模型的广泛可得性,以及其开箱即用的特性和各个模型所具备的不同优势,极大地推动了 LLM Ensemble 领域的发展。
未中顶会,没有发表arXiv,一篇博客却成为OpenAI速通票。天才科学家Keller Jordan仅凭Muon优化器博客加入OpenAI。甚至,它可能被用于训练下一代超级模型GPT-5。
近期arxiv最热门论文,Qwen&清华LeapLab团队最新成果: 在强化学习训练大模型推理能力时,仅仅20%的高熵token就能撑起整个训练效果,甚至比用全部token训练还要好。
在过去的一周,这一方向的进展尤其丰富。有人发现,几篇关于「让 LLM(或智能体)学会自我训练」的论文在 arXiv 上集中出现,其中甚至包括受「哥德尔机」构想启发而提出的「达尔文哥德尔机」。或许,AI 模型的自我进化能力正在加速提升。
刚刚,alphaXiv 推出了新功能「Deep Research for arXiv」,该功能可协助研究人员更高效地在 arXiv 平台上进行学术论文的检索与阅读,显著提升文献检索及研究效率。
今年年初,OpenAI 上线 Deep Research,开启了智能体又一新阶段,其能根据用户需求自主进行网络信息检索、整合多源信息、深度分析数据,并最终为用户提供全面深入的解答。
现在是 2025 年,新论文要以博客形式出现。