
清华&通院推出"绝对零"训练法,零外部数据大模型自我博弈解锁推理能力
清华&通院推出"绝对零"训练法,零外部数据大模型自我博弈解锁推理能力不用引入外部数据,通过自我博弈(Self-play)就能让预训练大模型学会推理?
不用引入外部数据,通过自我博弈(Self-play)就能让预训练大模型学会推理?
在人工智能领域,推理能力的进化已成为通向通用智能的核心挑战。近期,Reinforcement Learning with Verifiable Rewards(RLVR)范式下涌现出一批「Zero」类推理模型,摆脱了对人类显式推理示范的依赖,通过强化学习过程自我学习推理轨迹,显著减少了监督训练所需的人力成本。
什么开源算法自称为DeepSeek-R1(-Zero) 框架的第一个复现?
OpenAI 的 o1 系列和 DeepSeek-R1 的成功充分证明,大规模强化学习已成为一种极为有效的方法,能够激发大型语言模型(LLM) 的复杂推理行为并显著提升其能力。
早在去年10月底IBM推出了PDL声明式提示编程语言,本篇是基于PDL的一种对Agent的自动优化方法,是工业界前沿的解决方案。当你在开发基于大语言模型的Agent产品时,是否曾经在提示模式选择和优化上浪费了大量时间?在各种提示模式(Zero-Shot、CoT、ReAct、ReWOO等)中选择最佳方案,再逐字斟酌提示内容,这一过程不仅耗时,而且常常依赖经验和直觉而非数据驱动的决策。
开源语音模型Orpheus让LLM涌现出人类情感!在A100 40GB显卡上,30亿参数模型的流式推理速度甚至超过了音频播放速度。甚至可以zero-shot克隆声音。
人和智能体共享奖励参数,这才是强化学习正确的方向?
本篇论文是由南洋理工大学 S-Lab 与普渡大学提出的无分类引导新范式,支持所有 Flow Matching 的生成模型。目前已被集成至 Diffusers 与 ComfyUI。
其实大模型在DeepSeek-V3时期就已经「顿悟」了?
尽管 DeepSeek-R1 在单模态推理中取得了显著成功,但已有的多模态尝试(如 R1-V、R1-Multimodal-Journey、LMM-R1)尚未完全复现其核心特征。