NeurIPS 2025 Spotlight | PhysX-3D:面向真实物理世界的3D资产生成范式
NeurIPS 2025 Spotlight | PhysX-3D:面向真实物理世界的3D资产生成范式3D 生成正从纯虚拟走向物理真实,现有的 3D 生成方法主要侧重于几何结构与纹理信息,而忽略了基于物理属性的建模。
3D 生成正从纯虚拟走向物理真实,现有的 3D 生成方法主要侧重于几何结构与纹理信息,而忽略了基于物理属性的建模。
近期,北京大学、哈尔滨工业大学联合 PsiBot 灵初智能提出首个自我增强的灵巧操作数据生成框架 ——DexFlyWheel。该框架仅需单条演示即可启动任务,自动生成多样化的灵巧操作数据,旨在缓解灵巧手领域长期存在的数据稀缺问题。目前已被 NeurIPS 2025 接受为 Spotlight(入选率约 3.2%)
面向自动驾驶的多模态大模型在 “推理链” 上多以文字或符号为中介,易造成空间 - 时间关系模糊与细粒度信息丢失。FSDrive(FutureSightDrive)提出 “时空视觉 CoT”(Spatio-Temporal Chain-of-Thought),让模型直接 “以图思考”,用统一的未来图像帧作为中间推理步骤,联合未来场景与感知结果进行可视化推理。
“TreeSynth” 就这样起源于作者们最初的构想:“如何通过一句任务描述生成海量数据,完成模型训练?” 同时,大规模 scalibility 对合成数据的多样性提出了新的要求。
在三维重建、NeRF 训练、视频生成等任务中,相机参数是不可或缺的先验信息。传统的 SfM/SLAM 方法(如 COLMAP)在静态场景下表现优异,但在存在人车运动、物体遮挡的动态场景中往往力不从心,并且依赖额外的运动掩码、深度或点云信息,使用门槛较高,而且效率低下。
刚刚,风头被中国机器人盖过的波士顿动力,又整了个大活!前后空翻我还能理解,这侧空翻?(不是哥们,你真会啊!)他们先在仿真环境中进行强化学习,一旦策略出现问题,那么他们就将其部署在真机上进行测试,观察问题,然后反复测试迭代,加强Spot的稳定性。
苹果已悄然成立代号「AKI」(Answers, Knowledge & Information)新团队,致力打造类ChatGPT的「答案引擎」,可整合网页信息直接生成回答,计划嵌入Siri、Safari、Spotlight等系统核心功能。这是苹果重塑AI搜索主控权的重大举措。
我非常不理解为什么有AI创业者选择播客赛道。 音频播客是一个非常小众的市场。小宇宙日活只有几百万,基本只有一线城市白领收听。就算是海外市场,Spotify都不能靠播客盈利,播客只会拖累其利润。 AI播客更是一个纯粹的、非常伪的伪命题。
众所周知,大型语言模型的训练通常分为两个阶段。第一阶段是「预训练」,开发者利用大规模文本数据集训练模型,让它学会预测句子中的下一个词。第二阶段是「后训练」,旨在教会模型如何更好地理解和执行人类指令。
多模态大模型 (MLLM) 驱动的 OS 智能体在单屏动作落实(如 ScreenSpot)、短链操作任务(如 AndroidControl)上展现出突出的表现,标志着端侧任务自动化的初步成熟。