
5年白领下岗,AGI靠RL一飞冲天?网友:这是让狗学会打麻将!
5年白领下岗,AGI靠RL一飞冲天?网友:这是让狗学会打麻将!只靠强化学习,AGI就能实现?Claude-4核心成员放话「5年内AI干掉白领」,却被Karpathy等联手泼冷水!持续学习真的可能吗?RL的真正边界、下一代智能的关键转折点到底在哪儿?
只靠强化学习,AGI就能实现?Claude-4核心成员放话「5年内AI干掉白领」,却被Karpathy等联手泼冷水!持续学习真的可能吗?RL的真正边界、下一代智能的关键转折点到底在哪儿?
强化学习(RL)已经成为当今 LLM 不可或缺的技术之一。从大模型对齐到推理模型训练再到如今的智能体强化学习(Agentic RL),你几乎能在当今 AI 领域的每个领域看到强化学习的身影。
大语言模型(LLMs)在决策场景中常因贪婪性、频率偏差和知行差距表现欠佳。研究者提出强化学习微调(RLFT),通过自我生成的推理链(CoT)优化模型,提升决策能力。实验表明,RLFT可增加模型探索性,缩小知行差距,但探索策略仍有改进空间。
近年来,强化学习 (RL) 在提升大型语言模型 (LLM) 的链式思考 (CoT) 推理能力方面展现出巨大潜力,其中直接偏好优化 (DPO) 和组相对策略优化 (GRPO) 是两大主流算法。
近年来,链式推理和强化学习已经被广泛应用于大语言模型,让大语言模型的推理能力得到了显著提升。
越通用,就越World Models。 我们知道,大模型技术爆发的原点可能在谷歌一篇名为《Attention is All You Need》的论文上。
强化学习·RL范式尝试为LLMs应用于广泛的Agentic AI甚至构建AGI打开了一扇“深度推理”的大门,而RL是否是唯一且work的一扇门,先按下不表(不作为今天跟大家唠的重点),至少目前看来,随着o1/o3/r1/qwq..等一众语言推理模型的快速发展,正推动着LLMs和Agentic AI在不同领域的价值与作用,
第一财经「新皮层」独家获悉,MiniMax即将推出文本推理模型,并将开源。半个月前,MiniMax刚刚发布和开源了视觉推理模型Orsta(One RL to See Them All)。MiniMax今年3月做出产品线调整,将旗下现有产品「海螺AI」更名为「MiniMax」,与公司同名,聚焦文本理解和生成;
当前,强化学习(RL)在提升大语言模型(LLM)推理能力方面展现出巨大潜力。DeepSeek R1、Kimi K1.5 和 Qwen 3 等模型充分证明了 RL 在增强 LLM 复杂推理能力方面的有效性。
他不是天才,博士毕业0顶会论文,却靠着坚持写技术博客,因RLHF「网红」博客文章一炮而红,逆袭成功、跻身AI核心圈!技术可以迟到,但影响力不能缺席。这一次,是写作改变命运。