AI资讯新闻榜单内容搜索-RL

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: RL
Meta发布40页报告,具身智能的下一步是「心智世界模型」:能听,能看,能理解,会共情

Meta发布40页报告,具身智能的下一步是「心智世界模型」:能听,能看,能理解,会共情

Meta发布40页报告,具身智能的下一步是「心智世界模型」:能听,能看,能理解,会共情

这篇报告第一次把对人心智状态的推断,放到和物理世界模型(physical world model)同等重要的位置上,并将其概念化为心智世界模型(mental world model)。相比于传统世界模型(如LeCun的JEPA)仅关注物理规律(物体运动、机械因果),心智世界模型则首次将心理规律(意图、情感、社会关系)纳入世界模型框架,实现“双轨建模”。

来自主题: AI资讯
5994 点击    2025-07-11 12:25
4B小模型数学推理首超Claude 4,700步RL训练逼近235B性能 | 港大&字节Seed&复旦

4B小模型数学推理首超Claude 4,700步RL训练逼近235B性能 | 港大&字节Seed&复旦

4B小模型数学推理首超Claude 4,700步RL训练逼近235B性能 | 港大&字节Seed&复旦

香港大学NLP团队联合字节跳动Seed、复旦大学发布名为Polaris的强化学习训练配方:通过Scaling RL,Polaris让4B模型的数学推理能力(AIME25上取得79.4,AIME24上取得81.2)超越了一众商业大模型,如Seed-1.5-thinking、Claude-4-Opus和o3-mini-high(25/01/31)。

来自主题: AI资讯
5547 点击    2025-07-09 12:10
突破全模态AI理解边界:HumanOmniV2引入上下文强化学习,赋能全模态模型“意图”推理新高度

突破全模态AI理解边界:HumanOmniV2引入上下文强化学习,赋能全模态模型“意图”推理新高度

突破全模态AI理解边界:HumanOmniV2引入上下文强化学习,赋能全模态模型“意图”推理新高度

在多模态大语言模型(MLLMs)应用日益多元化的今天,对模型深度理解和分析人类意图的需求愈发迫切。尽管强化学习(RL)在增强大语言模型(LLMs)的推理能力方面已展现出巨大潜力,但将其有效应用于复杂的多模态数据和格式仍面临诸多挑战。

来自主题: AI技术研报
7263 点击    2025-07-09 10:59
斯坦福毕业,用RL做Agent,华人创业团队Pokee.ai种子轮融资1200万美元

斯坦福毕业,用RL做Agent,华人创业团队Pokee.ai种子轮融资1200万美元

斯坦福毕业,用RL做Agent,华人创业团队Pokee.ai种子轮融资1200万美元

「哈喽,可以听到吗?」北京时间上午 10 点,大洋彼岸的 Pokee.ai 创始人朱哲清接通了我们的连线电话,此刻他正位于美国西海岸,当地时间为前一日晚上 7 点。「哈喽,可以听到吗?」北京时间上午 10 点,大洋彼岸的 Pokee.ai 创始人朱哲清接通了我们的连线电话,此刻他正位于美国西海岸,当地时间为前一日晚上 7 点。

来自主题: AI资讯
7414 点击    2025-07-09 09:07
伯克利最强代码Agent屠榜SWE-Bench!用Scaling RL打造,配方全公开

伯克利最强代码Agent屠榜SWE-Bench!用Scaling RL打造,配方全公开

伯克利最强代码Agent屠榜SWE-Bench!用Scaling RL打造,配方全公开

新晋AI编程冠军DeepSWE来了!仅通过纯强化学习拿下基准测试59%的准确率,凭啥?7大算法细节首次全公开。

来自主题: AI技术研报
6952 点击    2025-07-07 15:46
Agent RL和智能体自我进化的关键一步: TaskCraft实现复杂智能体任务的自动生成

Agent RL和智能体自我进化的关键一步: TaskCraft实现复杂智能体任务的自动生成

Agent RL和智能体自我进化的关键一步: TaskCraft实现复杂智能体任务的自动生成

近年来,基于智能体的强化学习(Agent + RL)与智能体优化(Agent Optimization)在学术界引发了广泛关注。然而,实现具备工具调用能力的端到端智能体训练,首要瓶颈在于高质量任务数据的极度稀缺。

来自主题: AI技术研报
6090 点击    2025-07-05 12:46
人机协同筛出2600万条数据,七项基准全部SOTA,昆仑万维开源奖励模型再迎新突破

人机协同筛出2600万条数据,七项基准全部SOTA,昆仑万维开源奖励模型再迎新突破

人机协同筛出2600万条数据,七项基准全部SOTA,昆仑万维开源奖励模型再迎新突破

大语言模型(LLM)以生成能力强而著称,但如何能让它「听话」,是一门很深的学问。 基于人类反馈的强化学习(RLHF)就是用来解决这个问题的,其中的奖励模型 (Reward Model, RM)扮演着重要的裁判作用,它专门负责给 LLM 生成的内容打分,告诉模型什么是好,什么是不好,可以保证大模型的「三观」正确。

来自主题: AI技术研报
6280 点击    2025-07-05 12:10
首次!世界模型、动作模型融合,全自回归模型WorldVLA来了

首次!世界模型、动作模型融合,全自回归模型WorldVLA来了

首次!世界模型、动作模型融合,全自回归模型WorldVLA来了

阿里巴巴达摩院提出了 WorldVLA, 首次将世界模型 (World Model) 和动作模型 (Action Model/VLA Model) 融合到了一个模型中。WorldVLA 是一个统一了文本、图片、动作理解和生成的全自回归模型。

来自主题: AI技术研报
6217 点击    2025-07-03 18:59
周志华团队新作:LLM中存在奖励模型,首次理论证明RL对LLM有效性

周志华团队新作:LLM中存在奖励模型,首次理论证明RL对LLM有效性

周志华团队新作:LLM中存在奖励模型,首次理论证明RL对LLM有效性

将大语言模型(LLMs)与复杂的人类价值观对齐,仍然是 AI 面临的一个核心挑战。当前主要的方法是基于人类反馈的强化学习(RLHF)。该流程依赖于一个通过人类偏好训练的奖励模型来对模型输出进行评分,最终对齐后的 LLM 的质量在根本上取决于该奖励模型的质量。

来自主题: AI技术研报
7501 点击    2025-07-03 10:00
抓住人们对“Soulmate”的渴望,20天入账200万美金?

抓住人们对“Soulmate”的渴望,20天入账200万美金?

抓住人们对“Soulmate”的渴望,20天入账200万美金?

6 月 17 日,一款 AI 占星产品 Starla-Call the Universe 进入了 iOS 美国下载总榜前 10,当笔者以为这又是一个昙花一现的产品时,它不仅能够持续坚守榜单 Top 10 长达半个月,而且到了 6 月 24 日,另一款产品 Astra-Life Advice 也进入了美榜前 10,两款同类产品相继进入 Top 10,并双双持续在榜超 1 周的时间。

来自主题: AI资讯
6098 点击    2025-07-02 11:39