
LeCun出手,造出视频世界模型,挑战英伟达COSMOS
LeCun出手,造出视频世界模型,挑战英伟达COSMOS2018 年,LSTM 之父 Jürgen Schmidhuber 在论文中( Recurrent world models facilitate policy evolution )推广了世界模型(world model)的概念,这是一种神经网络,它能够根据智能体过去的观察与动作,预测环境的未来状态。
2018 年,LSTM 之父 Jürgen Schmidhuber 在论文中( Recurrent world models facilitate policy evolution )推广了世界模型(world model)的概念,这是一种神经网络,它能够根据智能体过去的观察与动作,预测环境的未来状态。
还在为强化学习(RL)框架的扩展性瓶颈和效率低下而烦恼吗?
新一代大型推理模型,如 OpenAI-o3、DeepSeek-R1 和 Kimi-1.5,在复杂推理方面取得了显著进展。该方向核心是一种名为 ZERO-RL 的训练方法,即采用可验证奖励强化学习(RLVR)逐步提升大模型在强推理场景 (math, coding) 的 pass@1 能力。
多模态推理,也可以讲究“因材施教”?
现有Mobile/APP Agent的工作可以适应实时环境,并执行动作,但由于它们大部分都仅依赖于动作级奖励(SFT或RL)。
MiniMax 在 7 月 10 日面向全球举办了 M1 技术研讨会,邀请了来自香港科技大学、滑铁卢大学、Anthropic、Hugging Face、SGLang、vLLM、RL领域的研究者及业界嘉宾,就模型架构创新、RL训练、长上下文应用等领域进行了深入的探讨。
在没有标准答案的开放式对话中,RL该怎么做?多轮对话是大模型最典型的开放任务:高频、多轮、强情境依赖,且“好回复”因人而异。
如今,强化学习(Reinforcement Learning,RL)在多个领域已取得显著成果。
今年AI最离谱也最让人上头的用法,可能不是写代码、写论文,而是算命。
「停止研究 RL 吧,研究者更应该将精力投入到产品开发中,真正推动人工智能大规模发展的关键技术是互联网,而不是像 Transformer 这样的模型架构。」