
综合RLHF、DPO、KTO优势,统一对齐框架UNA来了
综合RLHF、DPO、KTO优势,统一对齐框架UNA来了随着大规模语言模型的快速发展,如 GPT、Claude 等,LLM 通过预训练海量的文本数据展现了惊人的语言生成能力。然而,即便如此,LLM 仍然存在生成不当或偏离预期的结果。这种现象在推理过程中尤为突出,常常导致不准确、不符合语境或不合伦理的回答。为了解决这一问题,学术界和工业界提出了一系列对齐(Alignment)技术,旨在优化模型的输出,使其更加符合人类的价值观和期望。
随着大规模语言模型的快速发展,如 GPT、Claude 等,LLM 通过预训练海量的文本数据展现了惊人的语言生成能力。然而,即便如此,LLM 仍然存在生成不当或偏离预期的结果。这种现象在推理过程中尤为突出,常常导致不准确、不符合语境或不合伦理的回答。为了解决这一问题,学术界和工业界提出了一系列对齐(Alignment)技术,旨在优化模型的输出,使其更加符合人类的价值观和期望。
现实世界中的强化学习在应用过程中也面临着巨大的挑战,尤其是如何保证系统的安全性。为了解决这一问题,安全强化学习(Safe Reinforcement Learning, Safe RL)应运而生,成为当前学术界和工业界关注的焦点。
World Labs旨在开发能够利用图像和其他数据对三维世界进行决策的软件,打造所谓的“世界大模型”
2022年,AI大牛Ilya Sutskever曾预测:「随着时间推移,人类预期和AI实际表现差异可能会缩小」。
“通用人工智能(AGI)的设计和开发,需要进行根本性改变。” 人工智能(AI)模型的参数规模越大,生成的答案就越准确?就更加可信? 还真不一定!
成立不到半年时间,李飞飞创办的 World Labs 融资超过 3 亿,估值超过 10 亿美元,成为新的 AI 独角兽。
LLM说起谎来,如今是愈发炉火纯青了。 最近有用户发现,OpenAI o1在思考过程中明确地表示,自己意识到由于政策原因,不能透露内部的思维链。
虽然 RLHF 的初衷是用来控制人工智能(AI),但实际上它可能会帮助 AI 欺骗人类。
不久之前,李飞飞教授的空间智能创业公司 World Labs 以及全明星的创业阵容正式亮相。 随后,李飞飞与另一位联合创始人 Justin Johnson 接受了 a16z 的专访。
OpenAI的self-play RL新模型o1最近交卷,直接引爆了关于对于self-play的讨论。