
最新综述:LLM作为法官,用AI评判AI
最新综述:LLM作为法官,用AI评判AI让AI来评判AI,即利用大语言模型(LLM)作为评判者,已经成为近半年的Prompt热点领域。这个方向不仅代表了AI评估领域的重要突破,更为正在开发AI产品的工程师们提供了一个全新的思路。
让AI来评判AI,即利用大语言模型(LLM)作为评判者,已经成为近半年的Prompt热点领域。这个方向不仅代表了AI评估领域的重要突破,更为正在开发AI产品的工程师们提供了一个全新的思路。
这是一个不容小觑的最新推理框架,它解耦了LLM的记忆与推理,用此框架Fine-tuned过的LLaMa-3.1-8B在TruthfulQA数据集上首次超越了GPT-4o。
这篇文章研究了提示格式对大型语言模型(LLM)性能的影响。
近期,微软研究团队发布了一项重要的研究成果,揭示了AI推理能力从传统的提示工程方法(如Medprompt)到原生推理机制(如OpenAI的o1)演进的全貌。此项研究为正在开发AI产品的朋友们提供了宝贵的技术洞察。本文将详细分析这一研究的过程和结论,探讨其对AI推理领域及产品开发的深远影响。
本文主要介绍prompt engineering的多种方法
每个神级 Prompt 都是一款产品,更代表了一种思想。
朋友们,想了解为什么同一模型会带来大量结果的不一致性吗?今天,我们来一起深入分析一下来自微软和麻省理工学院的一项重大发现——不同的Prompt格式如何显著影响LLM的输出精度。这些研究结果对于应用Prompt优化设计具有非常重要的应用价值。
用AI大模型一键解析MRI、CT和病理学等九大生物医学成像模式。
10月28日,The Information报道称,Meta正在研发自己的“AI驱动搜索引擎”,以减少对谷歌和微软Bing搜索的依赖。Meta的搜索,将通过生成式AI对用户输入的关键词或者prompt进行摘要和总结。
在当前 AI 开发中,提示词工程常常面临优化耗时、效果不稳定等挑战。LangChain 近日推出自家的自动提示词优化工具Promptim[1],为开发者提供了一套系统化改进 AI 提示词的解决方案。这款工具能够自动优化特定任务的提示词,显著提升开发效率。