
Prompt的尽头,居然是MBTI。
Prompt的尽头,居然是MBTI。论文的标题很学术,叫《心理学增强AI智能体》但是大白话翻译一下就是,想要让大模型更好地完成任务,你们可能不需要那些动辄几百上千字的复杂Prompt,不需要什么思维链、思维图谱,甚至不需要那些精巧的指令。
论文的标题很学术,叫《心理学增强AI智能体》但是大白话翻译一下就是,想要让大模型更好地完成任务,你们可能不需要那些动辄几百上千字的复杂Prompt,不需要什么思维链、思维图谱,甚至不需要那些精巧的指令。
随着Agent的爆发,大型语言模型(LLM)的应用不再局限于生成日常对话,而是越来越多地被要求输出像JSON或XML这样的结构化数据。这种结构化输出对于确保安全性、与其他软件系统互操作以及执行下游自动化任务至关重要。
时薪900美元的AI工程师正成为咨询界新贵,直接挑战麦肯锡等传统巨头。面对高达95%的企业AI项目失败率,传统MBA式顾问空有战略却难落地。为此,Hasura推出了一种新型「AI工程师顾问」应运而生,他们不仅能提供策略,更能亲手编码、部署,弥合了从构想到现实的鸿沟。
来自斯坦福的研究者们最近发布的一篇论文(https://arxiv.org/abs/2509.01684)直指RL强化学习在机器学习工程(Machine Learning Engineering)领域的两个关键问题,并克服了它们,最终仅通过Qwen2.5-3B便在MLE任务上超越了仅依赖提示(prompting)的、规模更大的静态语言模型Claude3.5。
nano banana爆火!网上看到的那些超强效果图是如何生成的呢?谷歌的官方Prompt模板终于来了!赶紧先收藏再说!
最近来自微软的研究者们带来了一个全新的思路,他们开源发布了POML(Prompt Orchestration Markup Language),它的的解决方案它的核心思想非常直接:为什么我们不能像开发网页一样,用工程化的思维来构建和管理我们的Prompt呢?这个编排语言很类似IBM的PDL
GPT-5发布半月,却被连连吐槽。如今,一张基准与GPT-4对比基准测试图,证明了Scaling Law没有撞墙。七年间,从GPT-1到GPT-5十四个花式Prompt对决,实力差一目了然。
提示词才是AI隐藏的王牌!马里兰MIT等顶尖机构研究证明,一半提示词,是让AI性能飙升49%的关键。
假如你还没有尝试用AI来提升效率,那一定要抽点时间来研究下,你会打开新世界的大门! 如果你用过,但觉得AI并没有传说中的那么神奇,不妨看看今天的文章,或许能帮助你更得心应手的驾驭AI。
长久以来我们都知道在Prompt里塞几个好例子能让LLM表现得更好,这就像教小孩学东西前先给他做个示范。在Vibe coding爆火后,和各种代码生成模型打交道的人变得更多了,大家也一定用过上下文学习(In-Context Learning, ICL)或者检索增强生成(RAG)这类技术来提升它的表现。