
自动驾驶理论新突破登Nature子刊!清华、密歇根联合提出三条技术路线,剑指「稀疏度灾难」
自动驾驶理论新突破登Nature子刊!清华、密歇根联合提出三条技术路线,剑指「稀疏度灾难」近日,清华大学与密歇根大学联合提出的自动驾驶汽车安全性「稀疏度灾难」问题,发表在了顶刊《Nature Communications》上。研究指出,安全攸关事件的稀疏性导致深度学习模型训练难度大增,提出了密集学习、模型泛化改进和车路协同等技术路线以应对挑战。
近日,清华大学与密歇根大学联合提出的自动驾驶汽车安全性「稀疏度灾难」问题,发表在了顶刊《Nature Communications》上。研究指出,安全攸关事件的稀疏性导致深度学习模型训练难度大增,提出了密集学习、模型泛化改进和车路协同等技术路线以应对挑战。
方向完全搞错了?
Meta AI的NLLB-200登上Nature,「不让任何一门语言掉队」,能翻译200种语言的大模型获得Nature社论的盛赞——复兴了濒临灭绝的语言,但是Nature研究人员也郑重提醒Meta,必须将使用这些语言的社区也纳入进来,才会真正减缓语言的消亡。
生命科学领域的基础大模型来了!
清华类脑计算研究中心施路平团队新成果,登上最新一期Nature封面。
未来,会发生什么?
我国在类脑计算、类脑感知两个重要方向均已取得基础性突破。
时隔3年,清华团队的研究再次登上Nature封面。刚刚,世界首个类脑互补视觉芯片Tianmouc重磅发布,灵感来源于人类视觉系统。它能以极低带宽和功耗采集图像信息,突破了传统的视觉感知挑战,自如应对开放世界中极端场景难题。
关于AI是否具有「心智理论」一直存在很多争议。Nature最新研究显示,GPT-4的行为可与人类媲美,甚至能够比人类更好地察觉出讽刺和暗示。虽然GPT-4在判断别人是否「失言」方面,未及人类水平,但这是因为它被不表达观点的护栏所限制,而并非因为其缺乏理解能力。
美国东北大学的计算机科学家 David Bau 非常熟悉这样一个想法:计算机系统变得如此复杂,以至于很难跟踪它们的运行方式。