
深度学习还不如浅层网络?RL教父Sutton持续反向传播算法登Nature
深度学习还不如浅层网络?RL教父Sutton持续反向传播算法登Nature人工神经网络、深度学习方法和反向传播算法构成了现代机器学习和人工智能的基础。但现有方法往往是一个阶段更新网络权重,另一个阶段在使用或评估网络时权重保持不变。这与许多需要持续学习的应用程序形成鲜明对比。
人工神经网络、深度学习方法和反向传播算法构成了现代机器学习和人工智能的基础。但现有方法往往是一个阶段更新网络权重,另一个阶段在使用或评估网络时权重保持不变。这与许多需要持续学习的应用程序形成鲜明对比。
本文第一作者为牛津大学 Harish Bhaskaran 院士课题组董博维博士。
距离GPT-4首次发布已经过去了将近一年半的时间,Nature最近发表的一篇报告却探索出了这个「过气」模型的新用途——氨基酸和蛋白质的结构建模。
生成式人工智能在写作中的爆炸性应用让抄袭变得难以界定,引发了学术圈的一场大讨论。
AI 技术在辅助抗体设计方面取得了巨大进步。然而,抗体设计仍然严重依赖于从血清中分离抗原特异性抗体,这是一个资源密集且耗时的过程。
让模型具有更加广泛和通用的认知能力,是当前人工智能(AI)领域发展的重要目标。目前流行的大模型路径是基于 Scaling Law (尺度定律) 去构建更大、更深和更宽的神经网络提升模型的表现,可称之为 “基于外生复杂性” 的通用智能实现方法。然而,这一路径也面临着一些难以克服的困境,例如高昂的计算资源消耗和能源消耗,并且在可解释性方面存在不足。
Nature的一篇文章透露:你发过的paper,很可能已经被拿去训练模型了!有的出版商靠卖数据,已经狂赚2300万美元。然而辛辛苦苦码论文的作者们,却拿不到一分钱,这合理吗?
近日,来自佐治亚理工学院的研究人员开发了RTNet,首次表明其「思考方式」与人类非常相似。
用光训练神经网络,清华成果最新登上了Nature!
在刚刚过去的一天,来自清华的光电智能技术交叉创新团队突破智能光计算训练难题,相关论文登上 Nature。