
显卡在偷懒?阿里大模型创作平台 MuseAI 极速模型切换技术提升 AI 创作效率
显卡在偷懒?阿里大模型创作平台 MuseAI 极速模型切换技术提升 AI 创作效率MuseAI 是由阿里集团爱橙科技研发的面向阿里内部的 AIGC 创作工作台,同时通过与阿里云旗下魔搭社区合作共建的形式,将主体能力通过魔搭社区的 AIGC 专区对公众开放。
MuseAI 是由阿里集团爱橙科技研发的面向阿里内部的 AIGC 创作工作台,同时通过与阿里云旗下魔搭社区合作共建的形式,将主体能力通过魔搭社区的 AIGC 专区对公众开放。
检索-增强生成 (RAG) 是一个永不过时的话题,并在不断扩展以增强LLMs 的功能。对于那些不太熟悉RAG 的人来说:这种方法利用外部知识来增强模型的能力,从外部资源中检索您实际需要的信息。
随着大语言模型(LLM)技术的快速发展,单一AI智能体已经展现出强大的问题解决能力。然而,在面对复杂的企业级应用场景时,单一智能体的能力往往显得捉襟见肘。
最近 AI 社区很多人都在讨论 Scaling Law 是否撞墙的问题。其中,一个支持 Scaling Law 撞墙论的理由是 AI 几乎已经快要耗尽已有的高质量数据,比如有一项研究就预计,如果 LLM 保持现在的发展势头,到 2028 年左右,已有的数据储量将被全部利用完。
德国学术圈每年热切期待的国际盛会——Mensch und Computer 研讨会(MuC),是探索人机互动(HCI)和用户体验(UX)前沿技术的顶尖平台。学者和研究人员在这里分享创新想法、讨论数字技术如何更好地融入我们的生活。设计师、工程师和技术爱好者们也会齐聚一堂,探索未来趋势,寻找创新灵感。
CPU+GPU,模型KV缓存压力被缓解了。 来自CMU、华盛顿大学、Meta AI的研究人员提出MagicPIG,通过在CPU上使用LSH(局部敏感哈希)采样技术,有效克服了GPU内存容量限制的问题。
QVQ 在人工智能的视觉理解和复杂问题解决能力方面实现了重大突破。在 MMMU 评测中,QVQ 取得了 70.3 的优异成绩,并且在各项数学相关基准测试中相比 Qwen2-VL-72B-Instruct 都有显著提升。通过细致的逐步推理,QVQ 在视觉推理任务中展现出增强的能力,尤其在需要复杂分析思维的领域表现出色。
很多研究已表明,像 ChatGPT 这样的大型语言模型(LLM)容易受到越狱攻击。很多教程告诉我们,一些特殊的 Prompt 可以欺骗 LLM 生成一些规则内不允许的内容,甚至是有害内容(例如 bomb 制造说明)。这种方法被称为「大模型越狱」。
基于昇腾算力的矩阵运算改进求解器框架,大幅提升Local Optimum跳出能力。
在与Suno对垒这条道路上,国内在AI音乐领域积累已久的公司,已经纷纷在自己的优势之上推出了相应的模型及应用,正与全球顶级产品展开了一场你追我赶的精彩对决。