破解多模态大模型“选择困难症”!内部决策机制首次揭秘:在冲突信息间疯狂"振荡"
破解多模态大模型“选择困难症”!内部决策机制首次揭秘:在冲突信息间疯狂"振荡"多模态大语言模型(MLLMs)在处理来自图像和文本等多种来源的信息时能力强大 。 然而,一个关键挑战随之而来:当这些模态呈现相互冲突的信息时(例如,图像显示一辆蓝色汽车,而文本描述它为红色),MLLM必须解决这种冲突 。模型最终输出与某一模态信息保持一致的行为,称之为“模态跟随”(modality following)
多模态大语言模型(MLLMs)在处理来自图像和文本等多种来源的信息时能力强大 。 然而,一个关键挑战随之而来:当这些模态呈现相互冲突的信息时(例如,图像显示一辆蓝色汽车,而文本描述它为红色),MLLM必须解决这种冲突 。模型最终输出与某一模态信息保持一致的行为,称之为“模态跟随”(modality following)
多模态大模型(MLLMs)虽然在图像理解、视频分析上表现出色,但多停留在整体场景级理解。
近年来,大语言模型(LLMs)以及多模态大模型(MLLMs)在多种场景理解和复杂推理任务中取得突破性进展。
近年来,多模态大语言模型(Multimodal Large Language Models, MLLMs)在图文理解、视觉问答等任务上取得了令人瞩目的进展。然而,当面对需要精细空间感知的任务 —— 比如目标检测、实例分割或指代表达理解时,现有模型却常常「力不从心」。
随着多模态大语言模型(MLLMs)在视觉问答、图像描述等任务中的广泛应用,其推理能力尤其是数学几何问题的解决能力,逐渐成为研究热点。 然而,现有方法大多依赖模板生成图像 - 文本对,泛化能力有限,且视
在科研、新闻报道、数据分析等领域,图表是信息传递的核心载体。要让多模态大语言模型(MLLMs)真正服务于科学研究,必须具备以下两个能力
近年来,多模态大模型(MLLMs)发展迅猛,从看图说话到视频理解,似乎无所不能。
使用过程奖励模型(PRM)强化大语言模型的推理能力已在纯文本任务中取得显著成果,但将过程奖励模型扩展至多模态大语言模型(MLLMs)时,面临两大难题:
在多模态大语言模型(MLLMs)应用日益多元化的今天,对模型深度理解和分析人类意图的需求愈发迫切。尽管强化学习(RL)在增强大语言模型(LLMs)的推理能力方面已展现出巨大潜力,但将其有效应用于复杂的多模态数据和格式仍面临诸多挑战。
思维链(Chain of Thought, CoT)推理方法已被证明能够显著提升大语言模型(LLMs)在复杂任务中的表现。而在多模态大语言模型(MLLMs)中,CoT 同样展现出了巨大潜力。