
MME-Finance:来自同花顺的金融领域多模态模型专业评估基准
MME-Finance:来自同花顺的金融领域多模态模型专业评估基准MME-Finance 是一个专为金融领域设计的多模态基准测试,由同花顺财经旗下的 HiThink 研究团队联合多家高校共同开发,旨在评估和提升多模态大型语言模型(MLLMs)在金融领域的专业理解和推理能力。
MME-Finance 是一个专为金融领域设计的多模态基准测试,由同花顺财经旗下的 HiThink 研究团队联合多家高校共同开发,旨在评估和提升多模态大型语言模型(MLLMs)在金融领域的专业理解和推理能力。
Ferret-UI 2 是苹果研究团队最新发表的一款先进的多模态大型语言模型(MLLM),旨在实现跨多个平台的通用用户界面(UI)理解。
PUMA(emPowering Unified MLLM with Multi-grAnular visual generation)是一项创新的多模态大型语言模型(MLLM),由商汤科技联合来自香港中文大学、港大和清华大学的研究人员共同开发。它通过统一的框架处理和生成多粒度的视觉表示,巧妙地平衡了视觉生成任务中的多样性与可控性。
多模态大语言模型(MLLM)如今已是大势所趋。 过去的一年中,闭源阵营的GPT-4o、GPT-4V、Gemini-1.5和Claude-3.5等模型引领了时代。
视觉数据的种类极其多样,囊括像素级别的图标到数小时的视频。现有的多模态大语言模型(MLLM)通常将视觉输入进行分辨率的标准化或进行动态切分等操作,以便视觉编码器处理。然而,这些方法对多模态理解并不理想,在处理不同长度的视觉输入时效率较低。
扩展多模态大语言模型(MLLMs)的长上下文能力对于视频理解、高分辨率图像理解以及多模态智能体至关重要。这涉及一系列系统性的优化,包括模型架构、数据构建和训练策略,尤其要解决诸如随着图像增多性能下降以及高计算成本等挑战。
内含一键部署教程
大语言模型 (LLM) 经历了重大的演变,最近,我们也目睹了多模态大语言模型 (MLLM) 的蓬勃发展,它们表现出令人惊讶的多模态能力。 特别是,GPT-4o 的出现显著推动了 MLLM 领域的发展。然而,与这些模型相对应的开源模型却明显不足。开源社区迫切需要进一步促进该领域的发展,这一点怎么强调也不为过。
多模态大语言模型 (Multimodal Large Language Moodel, MLLM) 以其强大的语言理解能力和生成能力,在各个领域取得了巨大成功。
随着大型语言模型(LLMs)的进步,多模态大型语言模型(MLLMs)迅速发展。它们使用预训练的视觉编码器处理图像,并将图像与文本信息一同作为 Token 嵌入输入至 LLMs,从而扩展了模型处理图像输入的对话能力。这种能力的提升为自动驾驶和医疗助手等多种潜在应用领域带来了可能性。