教程|别只盯着 Langchain!Google ADK 搭建 Agent,上下文管理效率翻倍
教程|别只盯着 Langchain!Google ADK 搭建 Agent,上下文管理效率翻倍Agent 的状态数据分两种:会话内的临时上下文和跨会话的长期知识。
Agent 的状态数据分两种:会话内的临时上下文和跨会话的长期知识。
2025 年,让 Agent 实际投产、落地应用的最大障碍已经不再是成本问题了,而是「质量」。如何让 Agent 输出可靠、准确的内容,仍然是最难的部分。
任务规划+文件系统访问+子agent委托
本周,LangChain 宣布完成 1.25 亿美元融资,投后估值 12.5 亿美元。除了宣布其独角兽地位外,该公司还发布了里程碑式更新:经过 3 年迭代,LangChain 1.0 正式登场。而且,这并非一次常规的版本升级,而是一场从零开始的重写。
在几天前的开发者大会上,OpenAI 发布了一套面向开发者和企业的完整工具集 AgentKit。其中,可视化画布 Agent Builder 用于创建、管理和版本化多智能体工作流,通过拖拽节点的方式即可编辑工作流。
LangChain 发布了 Open SWE,这是一个完全开源的异步编码智能体,旨在在云端运行并处理复杂的软件开发任务。公司表示,Open SWE 代表了从实时“副驾驶”助手向更自主、长期运行的智能体的转变,这些智能体可以直接集成到开发人员现有的工作流程中。
当LangChain在6月23日发布那篇著名的Context Engineering博客时,IBM Research的研究者们早在10天前就已经用严格的学术实验证明了这套方法的有效性。
AI 时代,你可能听说过提示词工程、RAG、记忆等术语。但是很少有人提及上下文工程(context engineering)。
本文将介绍 22 种先进的RAG技术,灵感来源于 all-rag-techniques 仓库中的全面实现。这些实现使用 Python 库(如 NumPy、Matplotlib 和 OpenAI 的嵌入模型),避免使用 LangChain 或 FAISS 等依赖,以保持简单性和清晰度。
大模型驱动的 AI 智能体(Agent)架构最近讨论的很激烈,其中一个关键争议点在于: 多智能体到底该不该建?