
240元打造擅长数学的多模态版R1,基于DeepSeek核心思想,两阶段训练提升推理能力至工业级应用标准
240元打造擅长数学的多模态版R1,基于DeepSeek核心思想,两阶段训练提升推理能力至工业级应用标准多模态大模型虽然在视觉理解方面表现出色,但在需要深度数学推理的任务上往往力不从心,尤其是对于参数量较小的模型来说更是如此。
多模态大模型虽然在视觉理解方面表现出色,但在需要深度数学推理的任务上往往力不从心,尤其是对于参数量较小的模型来说更是如此。
LMM在人类反馈下表现如何?新加坡国立大学华人团队提出InterFeedback框架,结果显示,最先进的LMM通过人类反馈纠正结果的比例不到50%!
尽管 DeepSeek-R1 在单模态推理中取得了显著成功,但已有的多模态尝试(如 R1-V、R1-Multimodal-Journey、LMM-R1)尚未完全复现其核心特征。
人类通过课堂学习知识,并在实践中不断应用与创新。那么,多模态大模型(LMMs)能通过观看视频实现「课堂学习」吗?新加坡南洋理工大学S-Lab团队推出了Video-MMMU——全球首个评测视频知识获取能力的数据集,为AI迈向更高效的知识获取与应用开辟了新路径。
以 GPT-4o 为代表的实时交互多模态大模型(LMMs)引发了研究者对高效 LMM 的广泛关注。现有主流模型通过将视觉输入转化为大量视觉 tokens,并将其嵌入大语言模型(LLM)上下文来实现视觉信息理解。
平面设计是一门艺术学科,它们致力于创造一些吸引注意力和有效传达信息的视觉内容。为了减轻人类设计师的负担,各种各样的海报生成模型相继被提出。它们只关注某些子任务,远未实现设计构图任务;它们在生成过程中不考虑图形设计的层次信息。为了解决这些问题,作者将分层设计原理引入多模态模型(LMM),并提出LaDeCo算法。
Meta斯坦福大学联合团队全面研究多模态大模型(LMM)中驱动视频理解的机制,扩展了视频多模态大模型的设计空间,提出新的训练调度和数据混合方法,并通过语言先验或单帧输入解决了已有的评价基准中的低效问题。
以 GPT4V 为代表的多模态大模型(LMMs)在大语言模型(LLMs)上增加如同视觉的多感官技能,以实现更强的通用智能。虽然 LMMs 让人类更加接近创造智慧,但迄今为止,我们并不能理解自然与人工的多模态智能是如何产生的。
视频多模态大模型(LMMs)的发展受限于从网络获取大量高质量视频数据。为解决这一问题,我们提出了一种替代方法,创建一个专为视频指令跟随任务设计的高质量合成数据集,名为 LLaVA-Video-178K。
随着大模型研究的深入,如何将其推广到更多的模态上已经成为了学术界和产业界的热点。最近发布的闭源大模型如 GPT-4o、Claude 3.5 等都已经具备了超强的图像理解能力,LLaVA-NeXT、MiniCPM、InternVL 等开源领域模型也展现出了越来越接近闭源的性能。