视听分离SOTA提速6倍!清华发布首个6M高性能模型|ICLR'26
视听分离SOTA提速6倍!清华发布首个6M高性能模型|ICLR'26清华大学团队推出的Dolphin模型突破了「高性能必高能耗」的瓶颈:仅用6M参数(较主流模型减半),通过离散化视觉编码和物理启发的热扩散注意力机制,实现单次推理即可精准分离语音,速度提升6倍以上,在多项基准测试中刷新纪录,为智能助听器、手机等端侧设备部署高清语音分离开辟新路。
清华大学团队推出的Dolphin模型突破了「高性能必高能耗」的瓶颈:仅用6M参数(较主流模型减半),通过离散化视觉编码和物理启发的热扩散注意力机制,实现单次推理即可精准分离语音,速度提升6倍以上,在多项基准测试中刷新纪录,为智能助听器、手机等端侧设备部署高清语音分离开辟新路。
针对这一问题,中国传媒大学媒体融合与传播国家重点实验室的吴晓雨教授团队于 ICLR 2026 发表论文《Language-guided Open-world Video Anomaly Detection under Weak Supervision》,直面 VAD 领域的核心问题 —— 什么是异常?
DiscoX构建了一套200题的长文翻译数据集,以平均长度1,712 tokens的长篇章做评测单元,要求整个长文文本作为一个整体来翻译,除翻译准确度外,重点考察跨段落的逻辑与风格一致性、上下文中的术语精确性、以及专业写作规范,贴合用户真实的使用场景。
过去一年,大模型写代码的能力几乎以肉眼可见的速度提升。从简单脚本到完整功能模块,GPT、Claude、DeepSeek 等模型已经能够在几秒钟内生成看起来相当 “专业” 的代码。
在当今的大模型后训练(Post-training)阶段,DPO(直接偏好优化) 凭借其无需训练独立 Reward Model 的优雅设计和高效性,成功取代 PPO 成为业界的 「版本之子」,被广泛应用于 Llama-3、Mistral 等顶流开源模型的对齐中。
本⽂的主要作者来⾃上海交通⼤学和上海⼈⼯智能实验室,核⼼贡献者包括任麒冰、郑志杰、郭嘉轩,指导⽼师为⻢利庄⽼师和邵婧⽼师,研究⽅向为安全可控⼤模型和智能体。 最近,Moltbook 的爆⽕与随后的迅速
目前,人形机器人已经能在现实中跳舞、奔跑、甚至完成后空翻。但接下来更关键的问题是:这些系统能否在部署之后持续地进行强化学习 —— 在真实世界的反馈中变得更稳定、更可靠,并在分布不断变化的新环境里持续适应与改进?
2025 年 1 月 20 日,DeepSeek 发布了推理大模型 DeepSeek-R1,在学术界和工业界引发了对大模型强化学习方法的广泛关注与研究热潮。 研究者发现,在数学推理等具有明确答案的任务
面对同行评审,许多作者都有过这样的经历:明明回答了审稿人的每一个问题,态度也足够谦卑,为什么最终还是没能打动对方?
为什么让多模态大模型“一步一步思考”(”Let’s think step by step”)来回答视频问题,效果有时甚至还不如让它“直接回答”?