
400万人围观的分层推理模型,「分层架构」竟不起作用?性能提升另有隐情?
400万人围观的分层推理模型,「分层架构」竟不起作用?性能提升另有隐情?还记得分层推理模型(Hierarchical Reasoning Model,HRM)吗? 这项工作于 6 月份发布,当时引起了不小的轰动——X/Twitter 上的相关讨论获得了超过 400 万的浏览量和数万个点赞,剖析这项工作的 YouTube 视频观看量也超过了 47.5 万次。
还记得分层推理模型(Hierarchical Reasoning Model,HRM)吗? 这项工作于 6 月份发布,当时引起了不小的轰动——X/Twitter 上的相关讨论获得了超过 400 万的浏览量和数万个点赞,剖析这项工作的 YouTube 视频观看量也超过了 47.5 万次。
当大模型在代码世界封神时,一场硬件领域的新战役也在打响——如何让 AI 在物理世界「动手」。这场攻坚战的突破速度比预想快一些,Physical AI 的可行性轮廓已然变得更为清晰。
27M小模型超越o3-mini-high和DeepSeek-R1!推理还不靠思维链。 开发者是那位拒绝了马斯克、还要挑战Transformer的00后清华校友,Sapient Intelligence的创始人王冠。
WebAgent 续作《WebShaper: Agentically Data Synthesizing via Information-Seeking Formalization》中
如何让AI像人一样,仅凭少量演示,就能稳健适应复杂多变的真实场景? 美国东北大学和波士顿动力RAI提出了HEP(Hierarchical Equivariant Policy via Frame Transfer)框架,首创“坐标系转移接口”,让机器人学习更高效、泛化更灵活。
最近,Mamba 作者之一 Albert Gu 又发新研究,他参与的一篇论文《 Dynamic Chunking for End-to-End Hierarchical Sequence Modeling 》提出了一个分层网络 H-Net,其用模型内部的动态分块过程取代 tokenization,从而自动发现和操作有意义的数据单元。
这篇报告第一次把对人心智状态的推断,放到和物理世界模型(physical world model)同等重要的位置上,并将其概念化为心智世界模型(mental world model)。相比于传统世界模型(如LeCun的JEPA)仅关注物理规律(物体运动、机械因果),心智世界模型则首次将心理规律(意图、情感、社会关系)纳入世界模型框架,实现“双轨建模”。
最近,上海交通大学 ScaleLab 与香港大学 MMLab@HKU 领衔发布 RoboTwin 系列新作 RoboTwin 2.0 以及基于 RoboTwin 仿真平台在 CVPR 上举办的双臂协作竞赛 Technical Report。
「市象」获悉,段楠已在其GitHub主页悄然更新履历:现任京东探索研究院视觉与多模态实验室负责人,带领研究团队研发视觉和多模态基础模型。此前,他曾任阶跃星辰Technical Fellow(2024-2025)和微软亚洲研究院自然语言计算团队资深首席研究员和研究经理(2012-2024)。
在上一篇研究图谱中,我们指出医疗领域很可能是 Vertical Agent 最先落地的领域,其中最有代表性的公司之一是 OpenEvidence,一款专为医生设计的 AI 专业诊断 Copilot。