
几分钟生成四维内容,还能控制运动效果:北大、密歇根提出DG4D
几分钟生成四维内容,还能控制运动效果:北大、密歇根提出DG4D近期,商汤科技 - 南洋理工大学联合 AI 研究中心 S-Lab ,上海人工智能实验室,北京大学与密歇根大学联合提出 DreamGaussian4D(DG4D),通过结合空间变换的显式建模与静态 3D Gaussian Splatting(GS)技术实现高效四维内容生成。
近期,商汤科技 - 南洋理工大学联合 AI 研究中心 S-Lab ,上海人工智能实验室,北京大学与密歇根大学联合提出 DreamGaussian4D(DG4D),通过结合空间变换的显式建模与静态 3D Gaussian Splatting(GS)技术实现高效四维内容生成。
本文将为大家介绍CVPR 2024 Highlight的论文LangSplat: 3D Language Gaussian Splatting(三维语义高斯泼溅)。LangSplat在开放文本目标定位和语义分割任务上达到SOTA性能。在1440×1080分辨率的图像上,查询速度比之前的SOTA方法LERF快了199倍。代码已开源。
在三维生成建模的研究领域,现行的两大类 3D 表示方法要么基于拟合能力不足的隐式解码器,要么缺乏清晰定义的空间结构难以与主流的 3D 扩散技术融合。来自中科大、清华和微软亚洲研究院的研究人员提出了 GaussianCube,这是一种具有强大拟合能力的显式结构化三维表示,并且可以无缝应用于目前主流的 3D 扩散模型中。
高斯溅射(Gaussian Splatting)在新视角合成领域掀起了一轮革命性浪潮,取代上一代技术神经辐射场(NeRF)成为学界业界顶流
在 3D 生成领域,根据文本提示创建高质量的 3D 人体外观和几何形状对虚拟试穿、沉浸式远程呈现等应用有深远的意义。