开发者生产力“平替”?MiniMax M2全面测评:代码、速度与迁移成本
开发者生产力“平替”?MiniMax M2全面测评:代码、速度与迁移成本生成式AI技术的成熟,让智能编程逐渐成为众多开发者的日常,然而一个大模型API选型的“不可能三角”又随之而来:追求顶级、高速的智能(如GPT-4o/Claude 3.5),就必须接受高昂的调用成本;追求低成本,又往往要在性能和稳定性上做出妥协。开发者“既要又要”的正义,谁能给?
生成式AI技术的成熟,让智能编程逐渐成为众多开发者的日常,然而一个大模型API选型的“不可能三角”又随之而来:追求顶级、高速的智能(如GPT-4o/Claude 3.5),就必须接受高昂的调用成本;追求低成本,又往往要在性能和稳定性上做出妥协。开发者“既要又要”的正义,谁能给?
传统智能体系统难以兼顾稳定性和学习能力,斯坦福等学者提出AgentFlow框架,通过模块化和实时强化学习,在推理中持续优化策略,并使小规模模型在多项任务中超越GPT-4o,为AI发展开辟新思路。
OpenAI完成史上最重要的一次组织架构调整后,紧接着开了一场直播。首次公开了内部研究目标的具体时间表,其中最引人注目的是“在2028年3月实现完全自主的AI研究员”,具体到月份。
在 AIGC 的下一个阶段,图像编辑(Image Editing)正逐渐取代一次性生成,成为检验多模态模型理解、生成与推理能力的关键场景。我们该如何科学、公正地评测这些图像编辑模型?
斯坦福等新框架,用在线强化学习让智能体系统“以小搏大”,领先GPT-4o—— AgentFlow,是一种能够在线优化智能体系统的新范式,可以持续提升智能体系统对于复杂问题的推理能力。
2B模型在多个基准位列4B参数以下开源第一。 抖音SAIL团队与LV-NUS Lab联合推出的多模态大模型SAIL-VL2。
吴恩达又出新课了,这次的主题是—Agentic AI。 在新课中,吴恩达将Agentic工作流的开发沉淀为四大核心设计模式:反思、工具、规划与协作,并首次强调评估与误差分析才是智能体开发的决定性能力:
游戏理解领域模型LynkSoul VLM v1,在游戏场景中表现显著超过了包括GPT-4o、Claude 4 Sonnet、Gemini 2.5 Flash等一众顶尖闭源模型。背后厂商逗逗AI,亦在现场吸引了不少关注的目光。
上海人工智能实验室发布新一代文档解析大模型——MinerU2.5。作为MinerU系列最新成果,该模型仅以1.2B参数规模,就在OmniDocBench、olmOCR-bench、Ocean-OCR等权威评测上,全面超越Gemini2.5-Pro、GPT-4o、Qwen2.5-VL-72B等主流通用大模型,以及dots.ocr、MonkeyOCR、PP-StructureV3等专业文档解析工具。
今年 8 月,GPT-5 发布,其在多个任务和基准上都表现卓越,但几乎和人世间的所有事物一样,并不是所有人都满意。尤其是 GPT-5 发布后「OpenAI 移除 ChatGPT 中模型选择器」的做法更是备受诟病(尤其是移除了情感表达更佳的 GPT-4o),甚至引发了诸多用户的「网上请愿」,详见我们的报道《用户痛批 GPT-5,哭诉「还我 GPT-4o」,奥特曼妥协了》。