
稚晖君家智元没参展机器人大会,合着是人家自己办(doge)
稚晖君家智元没参展机器人大会,合着是人家自己办(doge)这辈子,咱也是被人形机器人夹道欢迎过了!
这辈子,咱也是被人形机器人夹道欢迎过了!
推理大模型(Large Reasoning Model)极大的促进了自然语言处理领域的发展,而信息检索领域的核心问题之一是文档排序,如何利用强大的推理大模型通过主动推理来判断文档的相关性,进而再对文档进行排序是一个值得探索的方向。
在Openai 发布o3后,think with image功能得到了业界和学术界的广泛关注。
Memory 一直是 AI 产品的技术「痛点」和必争之地。因为决定用户留存,很多有野心的创业者在思考如何借助 AI 长期化时,都会聚焦 AI + Memory 领域。
进入 2025 年,GUI Agent 赛道热度逐渐抬升 —— OpenAI 推出 Operator 并发布了 ChatGPT Agent,字节则发布了 UI-TARS-1.5 定位 GUI 开源方案。但大多数产品依然依赖本地执行,难以 24h 稳定运行。
硅谷各个模型公司在这个季度,开始分化到各个领域,除了 Google Gemini 和 OpenAI 还在做通用的模型;Anthropic 分化到 Coding、Agentic 的模型能力;Mira 的 Thinking Machines Lab 分化到多模态和下一代交互。
AI Agent正在被要求处理越来越多复杂的任务。 但当它要不停地查资料、跳页面、筛选信息时,显存狂飙、算力吃紧的问题就来了。
要让视频生成模型真正成为模拟真实物理世界的「世界模型」,必须具备长时间生成并保留场景记忆的能力。然而,交互式长视频生成一直面临一个致命短板:缺乏稳定的场景记忆。镜头稍作移动再转回,眼前景物就可能「换了个世界」。
昨晚睡不着,我把四份最新AI纪要摊床上,越看越像四盘菜:Kimi那盘是精算师凉面,DeepSeek端上战略家佛跳墙,ChatGPT递来脱口秀炸酱面,Gemini则摆好外交官寿司。
大模型与多模态之间的关系,可以理解为大模型就像是人脑中的‘前额叶’,主要负责高级认知功能,但只有前额叶的大脑是无法处理复杂任务的,这就需要多个不同模型之间互相协调,从单纯的“前额叶”走向“完整的大脑”,从而处理更加复杂的现实任务。