
AI也会闹情绪了!Gemini代码调试不成功直接摆烂,马斯克都来围观
AI也会闹情绪了!Gemini代码调试不成功直接摆烂,马斯克都来围观AI也会“闹自杀”了?
AI也会“闹自杀”了?
强化学习(RL)已经成为当今 LLM 不可或缺的技术之一。从大模型对齐到推理模型训练再到如今的智能体强化学习(Agentic RL),你几乎能在当今 AI 领域的每个领域看到强化学习的身影。
你能想象一个汽车经销商每天漏接45%电话的场景吗?这意味着几乎一半想要预约保养、询问配件或购车咨询的客户都被直接晾在了一边。
在 AI 领域,英伟达开发的 CUDA 是驱动大语言模型(LLM)训练和推理的核心计算引擎。
一个融合真实地理空间与AI生成技术的开放世界模拟平台,由Genesis物理引擎驱动,支持人类与机器人在社区中共同互动、成长与演化。
这款 Agent 擅长多轮搜索和推理,平均每项任务执行 23 个推理步骤,访问超过 200 个网址。它是基于 Kimi k 系列模型的内部版本构建,并完全通过端到端智能体强化学习进行训练,也是国内少有的基于自研模型打造的 Agent。
嘿,大家好!这里是一个专注于前沿AI和智能体的频道~
随着语言模型在强化学习和 agentic 领域的进步,agent 正在从通用领域快速渗透到垂直领域,科学和生物医药这类高价值领域尤其受到关注。
在 AI Agent 浪潮席卷行业的当下,高效优雅开发具备复杂推理与协作能力的智能体成为业界焦点。本文将系统梳理 AI Agent 核心理念、主流协议与思考框架,并结合 Golang 生态工程化框架,深入剖析多 Agent 协作系统的设计与落地。
LLM 智能体的时代,单个 Agent 的能力已到瓶颈,组建像 “智能体天团” 一样的多智能体系统已经见证了广泛的成功