速递|OpenAI高管离职,创立AI材料科学初创公司
速递|OpenAI高管离职,创立AI材料科学初创公司OpenAI 的培训研究副总裁 Liam Fedus 即将离职,以创立一家材料科学 AI 初创公司。Fedus 在 X 上发表声明,确认了该报道并补充了一些额外细节。
OpenAI 的培训研究副总裁 Liam Fedus 即将离职,以创立一家材料科学 AI 初创公司。Fedus 在 X 上发表声明,确认了该报道并补充了一些额外细节。
3 月 18 日上午,字节跳动豆包大模型部门(Seed)召开全员会,由负责模型应用相关工作的朱文佳,与新近加入的负责 AI 基础研究探索工作的吴永辉共同主持。两人谈到了未来的目标,明确 Seed 部门的最重要目标是探索智能上限;同时强调进一步加强组织文化,提高技术开放程度,并考虑推进开源。
OpenAI 又有重量级员工出走!这次是后训练负责人、研究副总裁 William Fedus。今天凌晨,Fedus 在 X 上发表了一则公开离职信,讲述了他离职的原因以及今后的去向。
在深度学习的多个应用场景中,联合优化多个损失项是一个普遍的问题。典型的例子包括物理信息神经网络(Physics-Informed Neural Networks, PINNs)、多任务学习(Multi-Task Learning, MTL)和连续学习(Continual Learning, CL)。然而,不同损失项的梯度方向往往相互冲突,导致优化过程陷入局部最优甚至训练失败。
LMM在人类反馈下表现如何?新加坡国立大学华人团队提出InterFeedback框架,结果显示,最先进的LMM通过人类反馈纠正结果的比例不到50%!
LLM自身有望在无限长token下检索信息!无需训练,在检索任务「大海捞针」(Needle-in-a-Haystack)测试中,新方法InfiniRetri让有效上下文token长度从32K扩展至1000+K,让7B模型比肩72B模型。
南洋理工大学的研究团队提出了MedRAG模型,通过结合知识图谱推理增强大语言模型(LLM)的诊断能力,显著提升智能健康助手的诊断精度和个性化建议水平。MedRAG在真实临床数据集上表现优于现有模型,准确率提升11.32%,并具备良好的泛化能力,可广泛应用于不同LLM基模型。
AI智能体,确实到了爆发时刻。
近日,记者发现,国内权威医疗大模型评测平台MedBench在官网更新了榜单。多个医疗AI产品及研究团队入榜,其中蚂蚁AI健康管家团队研发的蚂蚁医疗大模型以评测榜单97.5、自测榜单98.2的高分再度夺得双料冠军。
2025 年 2 月发布的 NoLiMA 是一种大语言模型(LLM)长文本理解能力评估方法。不同于传统“大海捞针”(Needle-in-a-Haystack, NIAH)测试依赖关键词匹配的做法,它最大的特点是 通过精心设计问题和关键信息,迫使模型进行深层语义理解和推理,才能从长文本中找到答案。