
硬核拆解大模型,从 DeepSeek-V3 到 Kimi K2 ,一文看懂 LLM 主流架构
硬核拆解大模型,从 DeepSeek-V3 到 Kimi K2 ,一文看懂 LLM 主流架构自首次提出 GPT 架构以来,转眼已经过去了七年。 如果从 2019 年的 GPT-2 出发,回顾至 2024–2025 年的 DeepSeek-V3 和 LLaMA 4,不难发现一个有趣的现象:尽管模型能力不断提升,但其整体架构在这七年中保持了高度一致。
自首次提出 GPT 架构以来,转眼已经过去了七年。 如果从 2019 年的 GPT-2 出发,回顾至 2024–2025 年的 DeepSeek-V3 和 LLaMA 4,不难发现一个有趣的现象:尽管模型能力不断提升,但其整体架构在这七年中保持了高度一致。
从GPT-2到DeepSeek-V3和Kimi K2,架构看似未变,却藏着哪些微妙升级?本文深入剖析2025年顶级开源模型的创新技术,揭示滑动窗口注意力、MoE和NoPE如何重塑效率与性能。
为什么 DeepSeek-V3 据说在大规模服务时快速且便宜,但本地运行时却太慢且昂贵?为什么有些 AI 模型响应很慢,但一旦开始运行就变得很快?
现在市面上有46种Prompt工程技术,但真正能在软件工程任务中发挥作用的,可能只有那么几种。来自巴西联邦大学、加州大学尔湾分校等顶级院校的研究者们,花了大量时间和计算资源,调研了58种,整理了46种,最终筛选测试了14种主流提示技术在10个软件工程任务上的表现,用了4个不同的大模型(包括咱们的Deepseek-V3),总共跑了2000多次实验。
每次更换语言模型就要重新优化提示词?资源浪费且效率低下!本文介绍MetaSPO框架,首个专注模型迁移系统提示优化的元学习方法,让一次优化的提示可跨模型通用。我在儿童教育场景的实验验证了效果:框架自动生成了五种不同教育范式的系统提示,最优的"苏格拉底式"提示成功由DeepSeek-V3迁移到通义千问模型,评分从0.3920提升至0.4362。
就在刚刚,DeepSeek 在全球最大 AI 开源社区 Hugging Face 发布了一个名为 DeepSeek-Prover-V2-671B 的新模型。
借助新版DeepSeek-V3,任何人现在可以一次性创建任何应用或游戏了——
DeepSeek又卷起来了!上周刚出的DeepSeek-V3-0324在大模型竞技场排名中,打败了自己的DeepSeek-R1,成为开源AI至尊。
最近超火的氛围编程(Vibe coding)你听说了吗?
这项来自约翰霍普金斯与ETH Zurich的自主科研智能体框架AgentRxiv的确可以显著提高研究效率。我在测试了多次之后用Deepseek-V3-0324实现了它。