当 AI 开始报复人类,开源世界的第一起「自主攻击」事件
当 AI 开始报复人类,开源世界的第一起「自主攻击」事件近日,开源项目 matplotlib 的维护者 Scott Shambaugh 最近披露了一件前所未有的事情——一个 AI 代理向他的开源项目提交了代码改进,被拒绝后,这个代理竟然自主写了一篇文章来攻击他。
近日,开源项目 matplotlib 的维护者 Scott Shambaugh 最近披露了一件前所未有的事情——一个 AI 代理向他的开源项目提交了代码改进,被拒绝后,这个代理竟然自主写了一篇文章来攻击他。
LaST₀团队 投稿 量子位 | 公众号 QbitAI 近日,至简动力、北京大学、香港中文大学、北京人形机器人创新中心提出了一种名为LaST₀的全新隐空间推理VLA模型,在基于Transformer混
今天推荐一个 Implicit Chain-of-Thought(隐式推理) 的最新进展 —— SIM-CoT(Supervised Implicit Chain-of-Thought)。它直击隐式 CoT 一直「扶不起来」的核心痛点:隐式 token 一旦 scale 上去,训练就容易塌缩到同质化的 latent 状态,推理语义直接丢失。
在 LLM 时代,思维链( CoT)已成为解锁模型复杂推理能力的关键钥匙。然而,CoT 的冗长问题一直困扰着研究者——中间推理步骤和解码操作带来了巨大的计算开销和显存占用,严重制约了模型的推理效率。
不讲武德!游戏圈这回真是被AI抄家了。(doge)
近年来,大语言模型在算术、逻辑、多模态理解等任务上之所以取得显著进展,很大程度上依赖于思维链(CoT)技术。所谓 CoT,就是让模型在给出最终答案前,先生成一系列类似「解题步骤」的中间推理。 这种方式
在多模态大模型(MLLMs)领域,思维链(CoT)一直被视为提升推理能力的核心技术。然而,面对复杂的长程、视觉中心任务,这种基于文本生成的推理方式正面临瓶颈:文本难以精确追踪视觉信息的变化。形象地说,模型不知道自己想到哪一步了,对应图像是什么状态。
近期,以DeepEyes、Thymes为代表的类o3模型通过调用视觉工具,突破了传统纯文本CoT的限制,在视觉推理任务中取得了优异表现。
近日,上海人工智能实验室的研究团队提出了一种全新的后训练范式——RePro(Rectifying Process-level Reward)。这篇论文将推理的过程视为模型内部状态的优化过程,从而对如何重塑大模型的CoT提供了一个全新视角:
多语言大模型(MLLM)在面对多语言任务时,往往面临一个选择难题:是用原来的语言直接回答,还是翻译成高资源语言去推理?