最鲁棒的MLLM!港科大开源「退化感知推理新范式」 | AAAI'26
最鲁棒的MLLM!港科大开源「退化感知推理新范式」 | AAAI'26多模态大语言模型(MLLMs)已成为AI视觉理解的核心引擎,但其在真实世界视觉退化(模糊、噪声、遮挡等)下的性能崩溃,始终是制约产业落地的致命瓶颈。
多模态大语言模型(MLLMs)已成为AI视觉理解的核心引擎,但其在真实世界视觉退化(模糊、噪声、遮挡等)下的性能崩溃,始终是制约产业落地的致命瓶颈。
2025 年还有一周结束,年底,AI 视频圈又卷起来了。
在个性化视觉生成的实际应用中,通用视觉基础模型的表现往往难以满足精准需求。为实现高度定制化的生成效果,通常需对大模型进行针对性的自适应微调,但当前以 LoRA 为代表的主流方法,仍受限于定制化数据收集与冗长的优化流程,耗时耗力,难以在真实场景中广泛应用。
不久前,NeurIPS 2025 顺利举办,作为人工智能学术界的顶级会议之一,其中不乏学术界大佬的工作和演讲。
大模型总是无法理解空间,就像我们难以想象四维世界。
具身智能落地迈出关键一步,AI拥有第一人称与第三人称的“通感”了!
智东西10月15日报道,今日,阿里通义千问团队推出其最强视觉语言模型系列Qwen3-VL的4B与8B版本,两个尺寸均提供Instruct与Thinking版本,在几十项权威基准测评中超越Gemini 2.5 Flash Lite、GPT-5 Nano等同级别顶尖模型。
2023年Meta推出SAM,随后SAM 2扩展到视频分割,性能再度突破。近日,SAM 3悄悄现身ICLR 2026盲审论文,带来全新范式——「基于概念的分割」(Segment Anything with Concepts),这预示着视觉AI正从「看见」迈向真正的「理解」。
为此,北大、UC San Diego 和 BeingBeyond 联合提出一种新的方法——Being-VL 的视觉 BPE 路线。Being-VL 的出发点是把这一步后置:先在纯自监督、无 language condition 的设定下,把图像离散化并「分词」,再与文本在同一词表、同一序列中由同一 Transformer 统一建模,从源头缩短跨模态链路并保留视觉结构先验。
本文作者团队来自 Insta360 影石研究院及其合作高校。目前,Insta360 正在面向世界模型、多模态大模型、生成式模型等前沿方向招聘实习生与全职算法工程师,欢迎有志于前沿 AI 研究与落地的同