
深度|具身合成数据的路线之争,谁将率先走出困境?
深度|具身合成数据的路线之争,谁将率先走出困境?本文主要描述了具身合成数据两条主要技术路线之争:“视频合成+3D重建”or “端到端3D生成”。参考自动驾驶的成功经验,前者模态转换链路过长导致误差累积,'直接合成3D数据'理论上有信息效率优势,但需要克服“常识欠缺”等挑战。
本文主要描述了具身合成数据两条主要技术路线之争:“视频合成+3D重建”or “端到端3D生成”。参考自动驾驶的成功经验,前者模态转换链路过长导致误差累积,'直接合成3D数据'理论上有信息效率优势,但需要克服“常识欠缺”等挑战。
想象一下,一座生机勃勃的 3D 城市在你眼前瞬间成型 —— 没有漫长的计算,没有庞大的存储需求,只有极速的生成和惊人的细节。
4D LangSplat通过结合多模态大语言模型和动态三维高斯泼溅技术,成功构建了动态语义场,能够高效且精准地完成动态场景下的开放文本查询任务。该方法利用多模态大模型生成物体级的语言描述,并通过状态变化网络实现语义特征的平滑建模,显著提升了动态语义场的建模能力。
「来绘」是一个由AI驱动的、玩家可以DIY的3D美学社区,而它构建起的,实际上是一个「游戏+社交+电商」的一体化数字美学生态。
AI圈最热的风头莫过于GPT-4o的原生图像,但别急着下定论。Gemini 2.5 Pro正在悄悄反击,在Chatbot竞技场夺冠、IQ测试拿下第一后,它还能解魔方、建模型、创游戏,甚至一键生成3D打印文件!AI的下一个战场,正在从文字转向视觉与空间,谁能笑到最后?
论文第一作者为余鑫,香港大学三年级博士生,通讯作者为香港大学齐晓娟教授。主要研究方向为生成模型及其在图像和 3D 中的应用,发表计算机视觉和图形学顶级会议期刊论文数十篇,论文数次获得 Oral, Spotlight 和 Best Paper Honorable Mention 等荣誉。此项研究工作为作者于 Adobe Research 的实习期间完成。
3D生成版DeepSeek再上新高度!
从单张图像生成灵活视角3D场景的技术来了,在考古保护、自主导航等直接获取3D数据成本高昂或不可行的领域具有重要应用价值。
三维高斯泼溅(3D Gaussian Splatting, 3DGS)技术基于高斯分布的概率模型叠加来表征场景,但其重建结果在几何和纹理边界处往往存在模糊问题。
「仅需一次前向推理,即可预测相机参数、深度图、点云与 3D 轨迹 ——VGGT 如何重新定义 3D 视觉?」